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In this paper, we analyze two effects caused by the Lagrangian nature of turbulent transfer which are
usually ignored in the theory of turbulent premixed combustion. These effects are �i� the
nonequilibrium behavior of the turbulent diffusion coefficient, which is important for modeling the
initial stage of combustion �for example, in the spark ignition engine�, and �ii� the existence of a
traveling front of turbulent diffusion with finite speed, which controls the velocity of the steady state
flame in strong turbulence. However, in order to derive simple and exact results, the hydrodynamical
and the combustion subproblems are stated to be independent by assuming a constant density so that
a passive chemical reaction is actually considered. First, we derive a parabolic diffusion equation
with both diffusion and chemical source terms expressed by Lagrangian characteristics of
turbulence. We show that, in general, the diffusivity of product particles is not zero in the moment
of their generation by chemical transformation and this result is important for combustion theories
that relate the formation of the initial flame with the development of the diffusion coefficient.
Afterward, a hyperbolic diffusion equation based on hydrodynamics is derived with turbulent
diffusion front velocity U f = �u�2�1/2, where �u�2�1/2 is the root mean square of turbulent velocity
fluctuations, and we analyze the relationships between U f and the speed of the steady state premixed
flame Ut

ss. In particular, for the flamelet combustion mechanism, we obtain Ut
ss= �U f

2+SL
2�1/2,

where SL is the normal laminar flame speed. This result shows that, in moderate turbulence
��u�2�1/2�SL�, the usually assumed relation Ut

ss=U f +SL is not consistent with an accurate statistical
analysis and more when U f �SL gives a percent error around 40%, which cannot be neglected in
applications. In strong turbulence case ��u�2�1/2�SL�, the value of the flame speed is very close to
that of the diffusion front velocity. © 2011 American Institute of Physics. �doi:10.1063/1.3562842	

I. INTRODUCTION

The classical paradigm of diffusion transfer modeling is
based on parabolic equations with turbulent diffusion coeffi-
cient Dt expressed in terms of Eulerian turbulent character-
istics by the formula Dt=const�u�2�1/2L, where �u�2�1/2 and
L are the root mean square of turbulent velocity fluctuation
and the Eulerian integral lengthscale of turbulence, respec-
tively. In the case of homogeneous and stationary turbulence,
Dt is constant. However, such Eulerian approach misses
qualitative effects that are caused by the Lagrangian nature
of turbulent transfer. In this paper, we analyze two of these
effects which are important for the theory of the turbulent
premixed combustion: �i� the time-dependence of the diffu-
sion coefficient due to finite value of the Lagrangian time-
scale of turbulence and �ii� the existence of the traveling
turbulent diffusion front with finite velocity that is the geo-
metrical locus of those Lagrangian particles that are the most
advanced in space.

Although both these effects are discussed in the scien-
tific literature devoted to turbulence mechanics,1 they are
usually ignored in the engineering handbooks,2 and this ne-
glect is justified in many practical applications because the
relaxation time of the diffusion coefficient is small with re-
spect to the reference time and, contemporaneously, the front

speed is large with respect to the reference velocity of the
process. Nevertheless, these effects play an important role in
turbulent premixed combustion not only under the theoretical
point of view but also in engineering applications. In fact, an
accurate description of the nonequilibrium behavior of the
turbulent diffusion coefficient, i.e., its growing in time, is
important during the initial transient stage of the combustion
process as, for example, in the spark ignition �SI� engine, the
laboratory bombs with spark ignition, or the initial instants
of the Bunsen flame, while the velocity of the diffusion front
is important because it is one of the main parameters that
control the speed of the steady state premixed flame at large
elapsed times.

The problem of turbulent combustion actually consists
on the coupling of the hydrodynamics subproblem with the
combustion subproblem. The former describes the state and
the dynamics of the hydrodynamic fields and the latter de-
scribes the transfer and the chemical processes that concern
the species dispersed by the velocity field. These subprob-
lems are connected through the common pressure and veloc-
ity fields. Combustion influences the average flow and the
turbulent fluctuations by means of the variation of the den-
sity field. This means that in the case study of constant den-
sity, the combustion does not influence the turbulence. This
approach is theoretically useful because it permits to split the
two subproblems and then to consider the combustion pro-a�Electronic mail: zimont@crs4.it.
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cess alone. So, if the parameters of turbulence are assumed
known, it is possible to analyze separately the combustion
subproblem in order to perform a theoretical analysis of
combustion models to prove their theoretical foundation.

In this spirit, here we assume a constant density, so we
actually consider turbulent diffusion with passive chemical
reaction, with the aim to deduce exact kinematical results
that can confirm some assumptions generally postulated in
literature models for turbulent premixed combustion.3,4 The
turbulent velocity field is assumed homogeneous, isotropic,
and stationary, and, without loss of generality, the mean ve-
locity is set equal to zero.

We tell here in advance that the choice to consider a
constant density has repercussions on the so called counter-
gradient turbulent flux, which is experimentally observed in
premixed flames. In fact, since such countergradient trans-
port phenomenon is generated by the fact that the pressure
gradient accelerates the light products more than the heavy
reactants,5,6 in the case of constant density the pressure gra-
dient acts equally on both products and reactants and then
there is no countergradient transport.

In the first part of the paper, we derive a parabolic equa-
tion with time-dependent diffusion coefficient and chemical
source where both are expressed in terms of Lagrangian
characteristics of turbulence. We show that, in this equation,
the turbulent diffusion coefficient does not depend on the
random appearance of product particles. This result is not
trivial, as at first glance it appears, because, since new spe-
cies result from chemical reaction, a zero diffusivity at the
initial instant for products dispersion could be stated from a
formal application of Taylor theory of turbulent dispersion,7

as it is sometimes discussed. However, our analysis proves
that it is not so. In fact, since the product particles are ran-
domly generated by the chemical reaction, the Taylor for-
mula for particle dispersion variance cannot be straightfor-
wardly applied. Then we discuss here the application of
Taylor theory also to the general cases with random initial
conditions. The derived result is important for combustion
models where the formation of the developed turbulent flame
during the initial stage is connected with the transient behav-
ior of the Lagrangian turbulent diffusion coefficient.3,4

Furthermore, from the purely Lagrangian formulation of
the process, we obtain that the spatial structure of the chemi-
cal source term is determined by the motion of mixture par-
ticles and that it results to be dependent on particle diffusion
properties.

In the second part of the paper, following Refs. 4 and 8,
we derive a hyperbolic equation with time-dependent coeffi-
cients on the basis of exact unclosed hydrodynamical equa-
tions. This hyperbolic transfer equation has the striking prop-
erty that it does not contain parameters to be empirically
determined. For an arbitrary Lagrangian velocity fluctuation
autocorrelation function, this equation permits to have dis-
persion properties in agreement with the Taylor theory7 and
gives a diffusion front velocity U f = �u�2�1/2. In particular,
when an exponential Lagrangian autocorrelation function is
considered, the coefficients of the equation turn out to be
constant.4,8 Moreover, when a chemical source is accounted
for, the relationships between the diffusion front velocity U f

and the speed of the steady state flame Ut
ss are analyzed.

Considering the flamelet combustion mechanism, generally
named BML model,9 it emerges that Ut

ss= �U f
2+SL

2�1/2, where
SL is the normal laminar flame speed. For strong turbulence
��u�2�1/2�SL�, this result confirms and better specifies the
classical estimation10 Ut

ss��u�2�1/2, which is based on intui-
tive considerations and from which it follows that the com-
bustion front speed does not depend on chemistry. For mod-
erate turbulence ��u�2�1/2�SL�, this result shows that the
usual estimation Ut

ss��u�2�1/2+SL is not consistent with an
accurate statistical analysis.

Depending on the investigation issue, we switch between
three-dimensional and one-dimensional framework. Boldface
notation indicates three-dimensional quantities, i.e., x, other-
wise one-dimensional, i.e., x.

The paper is organized as follows. To better highlight the
aims of the later mathematical analysis, in Sec. II, the scien-
tific problems that motivate the research are stated; in Sec.
III, the Taylor theory is briefly reminded and its application
in reactive mixture is discussed; in Sec. IV, a transport equa-
tion with finite front velocity is derived and the role of the
front velocity in the premixed combustion process is ana-
lyzed; finally, in Sec. V, the conclusions are given.

II. DEFINITION OF THE PROBLEMS
AND ASSUMPTIONS

The two Lagrangian characteristics of turbulent disper-
sion which are analyzed in the present paper are relevant, in
the theory of turbulent premixed combustion, for the follow-
ing two specific problems.

A. Product generation and turbulent diffusion
coefficient

The classical paradigm of turbulent premixed combus-
tion is based on a parabolic diffusion equation with chemical
source W�x , t� for the average value C of the instantaneous
progress variable c �c=0 in unburned mixture and c=1 in
burned one�. In the simplest case of homogeneous, isotropic
and stationary turbulence, with constant density and zero
mean velocity, the flame propagation is described by the fol-
lowing differential equation:

�C

�t
= Dt�

2C + W�x,t� . �1�

As defined in Sec. I, the turbulent diffusion coefficient Dt is
constant and expressed in terms of Eulerian characteristics of
turbulence by the formula Dt=const�u�2�1/2L. The study and
prediction of the mean chemical source term W is one of the
main targets of combustion theory.

The developed analysis is intended for the flamelet com-
bustion mechanism, when the transformation of reactants in
products takes place in a strongly wrinkled surface that di-
vides reactants and products. Every element of this surface �a
flamelet sheet� travels in the unburned mixture with constant
speed that is generally assumed to be equal to the velocity of
the normal laminar flame SL. This sheet is considered to be a
laminar flame with constant speed SL and zero laminar flame
thickness �L. Mathematically, a process like this corresponds
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to assume the molecular diffusion coefficient Dm and the
chemical time �ch with the limit values Dm→0 and �ch→0
such that Dm /�ch=const. So we have that limDm→0 �L

��Dm�ch�1/2=0 and limDm→0 SL��Dm /�ch�1/2=const. Then,
for this reason, in what follows, molecular diffusion is ne-
glected and it is set Dm=0.

We consider a plane initial dividing surface so that at
t� t0 it is described by the profile C�x , t� with stepwise initial
condition C�x�x0 , t0�=1 and C�x�x0 , t0�=0. In the context
of Taylor theory7 for nonreacting particles �W=0�, the
Lagrangian description of turbulent diffusion shows that in
general, even in stationary turbulence, Dt is not constant but
it is a function of the elapsed time and it grows from Dt�0�
=0 to the asymptotic constant value Dt���= �u�2�TL, where
TL is the Lagrangian integral timescale of turbulence. As-
suming a Gaussian probability density function �PDF� for
particle displacement, the diffusion coefficient grows follow-
ing the law:

Dt�t − t0� = 

t0

t

BL�� − t0�d� , �2�

where BL�t− t0�=v�t�v�t0�, with BL�0�= �u�2�, is the autocor-
relation function of Lagrangian velocity fluctuation v�t� that,
from stationarity, depends solely on the elapsed time t− t0.
The Lagrangian integral timescale TL is determined by

TL = 

0

� BL���
�u�2�

d� .

However, during a flamelet combustion process, it is not
clear how to statistically manage the random appearance of
product particles at their generation instant t0. At first glance,
with a Lagrangian approach, the initial moment of diffusion
of these product volumes, which randomly appear in space
and time in the flame, is their generation moment that is
when reactant particles cross the random flamelet sheet. As a
consequence, from application of Eq. �2� to these volumes, it
emerges that combustion reduces the Lagrangian diffusion
coefficient because each volume starts its spreading with a
null diffusion coefficient. Moreover, in the context of such
intuitive knowledge, at very large elapsed times the turbulent
diffusion coefficient across the steady state flame is not con-
stant because its initial value at the front edge would be zero
and then growing across the flame driven by Eq. �2�. Never-
theless, we show that such kinds of considerations, which
sometimes may occur in discussions, are erroneous. We point
out that Taylor theory is not applicable directly to this case
with random initial data, and we deduce kinematical relation
for this case in Sec. III. In particular, we show that the tur-
bulent diffusion coefficient Dt does not depend on the ran-
dom generation of product volumes.

B. Flame front velocity estimation

The second flaw of the classical paradigm expressed by
Eq. �1� is connected to its parabolic character and it is again
due to Lagrangian properties of fluid particles traveling.
In fact, the consequence of this parabolic nature is that at

t� t0, the value of the mean progress variable is not zero
everywhere, which means that the front edge of the flame has
an infinitely large speed.

In this respect, we remind the classical estimation10 of
the velocity of the steady state flame Ut

ss at strong turbulence
that, based on limited fluctuation speed, it is of the order of
magnitude of the root mean square of turbulent velocity fluc-
tuation Ut

ss��u�2�1/2 and it follows that the flame speed does
not depend on chemistry. At a first impression, this result can
be considered implausible. In fact, since the flame speed is
caused by combustion, one expects that chemical kinetics
has a key role. Maybe for this reason, this classical estima-
tion has been ignored in the most recent theories of turbulent
combustion and just few attempts11,12 exist in literature to
theoretically prove or disprove it.

The target of our analysis is not only to show that the
mentioned and intuitive estimation Ut

ss��u�2�1/2 can be theo-
retically justified, but also quantitatively refined. In the
analysis that follows, a hyperbolic transfer equation is de-
rived, instead of parabolic equation �1�, using a closure that
does not require any empirical constant. This mass transfer
description is consistent with the Lagrangian property of the
turbulent field concerning the impossibility to have an infi-
nitely large speed of the front edge.

III. PARABOLIC TRANSPORT EQUATION
WITH LAGRANGIAN DIFFUSION AND SOURCE
TERMS

A. Remind on Taylor theory and its applications

The Taylor theory of turbulent diffusion7 is an exact ki-
nematical theory, unlike closure models for turbulence dy-
namics equations. Given a homogeneous and stationary tur-
bulent velocity field with zero mean, the Taylor theory
describes the random motion of a fluid particle in terms of
the Lagrangian autocorrelation function. Since, in this sec-
tion, we aim to apply the Taylor approach in the analysis of
turbulent diffusion in a medium where passive chemical
transformations randomly occur, we briefly remind the deri-
vation of the main expression.

Consider the one-dimensional case. The position of a
fluid particle x is kinematically described by

x�t� = x0 + 

t0

t

v���d�, x0 = x�t0� , �3�

where v�t� is the component in the x-direction of the particle
velocity. Taking a large number of realizations of the flow
with the same initial condition �x0 , t0�, the Lagrangian en-
semble average is x̄=x0. The particle dispersion variance
turns out to be

�x − x0�2 = 	2�t − t0�

= 

t0

t 

t0

t

v��1�v��2�d�1d�2

= 

t0

t 

t0

t

BL��1 − �2�d�1d�2. �4�
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With the change of variables �=�2−�1 and s= ��2+�1� /2, the
double integral in Eq. �4� reduces to

	2�t − t0� = 

t0−t

0

��t − t0� + �	BL���d�

+ 

0

t−t0

��t − t0� − �	BL���d� , �5�

which, using the symmetry property BL���=BL�−��, gives the
final result

	2�t − t0� = 2

t0

t

�t − ��BL�� − t0�d� . �6�

From Taylor formula �6�, with a generic correlation function
BL�t�, it follows that1

	2�t − t0� � �u�2��t − t0�2, t − t0 
 TL,

	2�t − t0� � 2�u�2�TL�t − t0�, t − t0 � TL.

Let the Lagrangian PDF of particle displacement
PL= PL�x ; t �x0 , t0�, with PL→��x−x0� when t→ t0, be
Gaussian

PL�x;t�x0,t0� =
1

�2�	2
exp
−

�x − x0�2

2	2 � , �7�

with 	2=	2�t− t0�=�−�
+��x−x0�2PL�x ; t �x0 , t0�dx, then it satis-

fies the following non-Markovian diffusion equation:

�PL

�t
= Dt�t − t0�

�2PL

�x2 , �8�

which was originally derived in 1976 by Adelman, see Ref.
13, formula �2.19�, on the basis of the linear Mori–Kubo
generalized Langevin equation with a Gaussian but non-
Markovian noise. Substituting Eq. �7� in Eq. �8� and subse-
quently using Eq. �6� gives

Dt�t − t0� =
1

2

d	2

dt
= 


t0

t

BL�� − t0�d� , �9�

from which it follows that Dt depends on time as a mono-
tonically increasing function and formula �2� is recovered.
From formula �9�, we have that Dt�0�=0 and the asymptotic
expressions for small and large elapsed times are

Dt�t − t0� � �u�2��t − t0�, �t − t0� 
 TL, �10�

Dt�t − t0� � �u�2�TL = �u�2�1/2�L, �t − t0� � TL, �11�

where �L= �u�2�1/2TL is the Lagrangian integral lengthscale of
turbulence. Actually, as mentioned in Sec. I, the Eulerian
approach to diffusion corresponds to assume the equilibrium
of the turbulent diffusion coefficient and the proportionality
between the Lagrangian and the Eulerian integral length
scales: �L=const·L.

It is worth to stress here that, unlike the equation for the
PDF of scalar concentration in the Eulerian framework,
which inevitably contains also the conditional dissipation
rate of the random variable for which the PDF is considered,
Eq. �8� is a simple unsteady diffusion equation because it is

stated in the Lagrangian framework and it is referred to the
Lagrangian PDF of fluid particle displacements. The diffu-
sion coefficient is positive because, in the same spirit of
Taylor approach, a constant density is assumed. Moreover,
we remark that Eq. �8� is a purely mathematical fact that
univocally and straightforwardly follows from two classical
statements: �i� the use of Taylor formula �6� for particle dis-
placement variance, which is an exact result that follows
from the kinematical formula dx /dt=v, and �ii� the assump-
tion that the particle displacement probability density func-
tion is Gaussian �7�.

Consider now the three-dimensional case. When each
particle contains a unit amount of diffusing matter with an
impulsive �-source, in x=0 at time t= t0, the source is de-
scribed by the function S�x , t�=��x���t− t0�. Then the
average concentration Y�x , t� is given by the expression
Y�x , t�=�PL�x ; t �x0 ,����x0����− t0�dx0d� and Eq. �7� is the
Green function of the equation

�Y

�t
= Dt�t − t0��2Y . �12�

It should be remarked that the initial data S�x , t�
=��x���t− t0� are identical in all realizations. When, in a
fixed initial moment t= t0, the mean concentration is distrib-
uted in space according to a known function S�x� and it is the
same in all realizations, then the solution of Eq. �12� in terms
of the Green function is

Y�x,t� = 

−�

+�

PL�x;t�x0,t0�S�x0�dx0. �13�

We stress that, however, for general initial conditions, the
diffusion process cannot be in principle described by Eq.
�12�. We list below some simple examples that show this.

1. Double source

In the case when the initial source is composed by
two impulsive �-sources at two different times t01� t02,
i.e., S1�x01, t01�=��x−x01���t− t01� and S2�x02, t02�
=��x−x02���t− t02�, Eq. �12� cannot be used because there is
not a single diffusion coefficient Dt. In fact, in each point
�x , t�, the diffusivity of the species under consideration de-
pends on both sources S1 and S2 and then this case obligatory
requires to use two equations with two different diffusion
coefficients Dt�t− t01� and Dt�t− t02�. Such situation can occur
in combustion when ignition takes place in two different
points and times, i.e., �x01, t01� and �x02, t02�, and after a
while the flames cross so that a common process results.

2. Random initial data uncorrelated with the velocity
field

In the case of statistically random initial data, Eq. �12� is
valid only if the random initial position of each particle and
the underlying velocity field are uncorrelated, because in this
case the evolution of the process does not depend on the
Lagrangian kinematical history before than t= t0.
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3. Random initial data correlated with the velocity
field

The case when the initial conditions are the solution to
Eq. �12� at some intermediate instant, say t= t�� t0 so that
S�x , t��=Y�x , t��, corresponds to the case when the random
initial positions of particles are correlated with the underly-
ing velocity field. Such kind of initial condition turns out to
be controlled also by the Lagrangian kinematics in the tem-
poral interval t0� t� t�, then the diffusion coefficient in Eq.
�12� must not be replaced by Dt�t− t��, so that Dt�t= t��=0,
but the correct diffusion coefficient is still Dt�t− t0�. The rea-
son is that, given the instant t= t�� t0, the Lagrangian PDF
PL�x ; t� �x0 , t0� contains kinematical information related to
the temporal interval t0� t� t�, while, obviously, it does not
depend on Lagrangian kinematical history preceding t0.

4. Retarded source

Consider the initial condition Y�x , t0�=S0��x���t0�,
where S0 is the strength of the impulsive source. If the
strength depends on time S=S�t�, with S�t0�=S0, the mean
concentration is given by the expression

Y�x,t� = 

t0

t 

−�

+�

PL�x;t�x0,��S�x0,��dx0d� .

Assume now that S�t�=S0+ �1−S0�H�t− t��, where H is the
Heaviside function so that H���=0 when ��0 and H���=1
when ��0, and t� is the instant of the chemical transforma-
tion. In the limit S0→0, we have that Y�x , t�=0 when t� t�

and Y�x , t��0 when t� t�, i.e., the initial condition of the
mean concentration is nonzero only at t= t� when the dif-
fused concentration appears in the turbulent medium and it is
determined by Y�x , t��= PL�x , t��. Nevertheless, we must use
the diffusion coefficient Dt�t− t0�, so that in the moment
t= t� it is Dt�t�− t0��0, quite similar to the example �c� when
the intermediate solution Y�x , t�� has been adopted as initial
data.

Finally, in the context of the Lagrangian formulation of
the turbulent diffusion problem with known initial mean pro-
file Y�x , t0�=S�x , t0�, we cannot, in contrast to the Eulerian
approach, predict Y�x , t� t0� for an arbitrary general case. In
the framework of Taylor theory, such prediction can be per-
formed �i� in the case of a deterministic initial condition, i.e.,
identical initial distributions in all realizations; �ii� in the
case of random initial conditions, but with particles
initial position and the underlying velocity field that are un-
correlated; �iii� in the case when an intermediate solution
Y�x , t�� t0� is used as initial condition and the process is let
to evolve according to the initial moment t= t0, which means,
with respect to Eq. �12�, do not replace the diffusion coeffi-
cient with Dt�t− t�� but keep it in the form Dt�t− t0�.

In premixed combustion, using the flamelet combustion
mechanism, chemical transformation takes place on self tra-
versing random surface �flamelet sheet� and the products of
combustion randomly appear. This means that the correct
application of Taylor theory for product particle diffusion
corresponds to the example �c�, where the initial positions

are random and correlated with the velocity field. So atten-
tion must be paid to use the correct diffusion coefficient to
include such temporal correlation.

B. Lagrangian form of chemical source term
and diffusion coefficient in parabolic turbulent
transport equation for passive reactive mixture

Let y�x , t� be the instantaneous random concentration
field. Following the probability theory, the mean concentra-
tion in the point x at time t is determined by

Y�x,t� =
 yPy�y ;t�x�dy , �14�

where Py�y ; t �x� is the PDF to have the concentration value y
at the time t in the fixed point x. The quantity Y�x , t� is the
average of the amount of material brought in �x , t� by all
particles of the mixture, without any selection on their initial
conditions. Then, in other words, the mean concentration
field Y�x , t� is the Eulerian measure that results from the
amount of material Lagrangianly transported by mixture
particles.

Since the system considered can be described by the
joint stochastic process �x ,y�, in analogy with the description
of the joint stochastic process �x ,v�, where v is the Lagrang-
ian velocity, in the case of constant average density, the fol-
lowing integral relation can be derived by Novikov
theorem:14

Py�y ;t�x� =
 P�y,x;t�x0,t0�dx0. �15�

Using Eq. �15�, definition �14� becomes

Y�x,t� =
 
 yP�y,x;t�x0,t0�dx0dy . �16�

In the most general case with statistical dependence be-
tween chemistry and particle kinematics, the joint �x ,y�
Lagrangian PDF P turns out to be

P�y,x;t�x0,t0� = f�y ;t�x,x0,t0�PL�x;t�x0,t0� ,

where f�y ; t �x ,x0 , t0� is the PDF of concentration in x con-
ditioned to those particles with initial condition �x0 , t0� and
PL�x ; t �x0 , t0� is the transitional PDF of particles from �x0 , t0�
to �x , t�. In this case, formula �16� becomes

Y�x,t� =
 

 yf�y ;t�x,x0,t0�dy�PL�x;t�x0,t0�dx0,

where the term in brackets can be recognized as the fraction
of average concentration in �x , t� due to the particles started
in �x0 , t0�, and, hereinafter, noted by

Ȳ�t�x,x0,t0� =
 yf�y ;t�x,x0,t0�dy . �17�

Since a chemically reactive mixture is considered, the action
of chemical transformation on the concentration of the
chemical species associated to the particles is given by the

time-dependence of the function Ȳ. Moreover, Ȳ must be

monotonically increasing with initial condition Ȳ =0 at t= t0,
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and, due to the random chemical transformation, Ȳ is related
to the probability for a particle started in �x0 , t0� to react in
�x , t�. Finally, the average concentration Y�x , t� can be re-
written in the form

Y�x,t� =
 Ȳ�t�x,x0,t0�PL�x;t�x0,t0�dx0. �18�

When PL�x ; t �x0 , t0� is Gaussian, its evolution equation
turns out to be Eq. �8�, where the nonequilibrium turbulent
diffusion coefficient Dt is expressed by formula �9� in terms
of the Lagrangian autocorrelation function BL�t− t0�, in ac-
cordance with Taylor theory.7,1 We remember that Taylor
theory can be used in three special cases of initial conditions:
deterministic initial condition, random initial position that is
uncorrelated by the velocity field, and a third initial condi-
tion that is an intermediate solution of the transport equation
but taking care to keep the continuity and the growing-in-
time monotonicity of the turbulent diffusion coefficient. In
one of the three previous cases, multiplying each side in Eq.

�8� by Ȳ�t �x ,x0� and integrating over dx0 yields the follow-
ing transport equation for reactive mixture:

�Y

�t
= Dt�t − t0��2Y +
 
� �Ȳ

�t
− Dt�t − t0��2Ȳ�PL

− 2Dt�t − t0� � Ȳ · �PL�dx0, �19�

where the integral term represents in general form the aver-
age chemical source W�x , t� by means of Lagrangian func-
tions �in contrast to usual representation with Eulerian
functions15�,

W�x,t� =
 
� �Ȳ

�t
− Dt�t − t0��2Ȳ�PL

− 2Dt�t − t0� � Ȳ · �PL�dx0. �20�

In order to physically interpret the chemical source term
in Eq. �20�, we observe that even if the chemical transforma-
tion takes place independently by the motion of particles and

fully described by the function Ȳ�t �x ,x0 , t0�, the spatial
structure of the chemical source term W�x , t� is indeed de-
termined also by the motion of the mixture particles. In fact,
the intensity of the chemical source W in a point x is due to
the number of particles that chemically react in x, obviously
the number of particles located in x is determined also by the
diffusion coefficient Dt and by the PDF of particle displace-
ment PL�x ; t �x0 , t�.

If the chemical transformation of reactant particles is
statistically independent of particle positions, then the two
random variables y and x are statistically independent. As a
consequence of this statistical independence, the joint �x ,y�
Lagrangian PDF P is given by the product of the marginal
PDF of y and the marginal PDF of x, where the first varies
without functional dependence on x and the second without
functional dependence on y. Then, with respect to the previ-
ous case, in the PDF of concentration f , the dependence on x

is dropped. Finally, in the special case with statistical inde-
pendence between chemistry and particle kinematics, the
joint �x ,y� Lagrangian PDF P turns out to be

P�y,x;t�x0,t0� = f�y ;t�x0,t0�PL�x;t�x0,t0� ,

and the mean concentration field can be rewritten as

Y�x,t� =
 Ȳ�t�x0,t0�PL�x;t�x0,t0�dx0, �21�

which is equal to a formula given by Corrsin, see Ref. 16,
formula �3�, and the transport equation reduces to

�Y�x,t�
�t

= Dt�t − t0��2Y +
 �Ȳ

�t
PL�x;t�x0�dx0. �22�

C. Application to turbulent premixed
combustion

Let us now apply the previous general formulation for
reactive systems to turbulent premixed combustion, even if
constant density is assumed. The concentration field y is re-
placed by the progress variable c. Assume that at the initial
moment t= t0, we have the stepwise distribution c=0 at
x�0 �reactants� and c=1 at x�0 �products�. At t� t0, the
average turbulent flame travels from left to right. In the case
of the flamelet combustion mechanism, it is assumed that the
chemical transformation takes place in a wrinkled self-
moving random surface. When a fluid particle crosses this
surface, an instantaneous variation of the progress variable
from c=0 to c=1 for such particle occurs. Let t�� t0 be the
random time when this transformation occurs, then the value
of the progress variable is c=0 when t� t� and c=1 when
t� t�.

In this case, the contribution to the progress variable in
�x , t� by the particles that were in �x0 , t0� can be determined
as the sum of c=1 weighted by the PDF of the random
reaction activation time 
�t� �x ,x0 , t0�,

Q�t�x,x0,t0� = 

t0

t

1 · 
�t��x,x0,t0�dt�. �23�

In the framework of the flamelet combustion mechanism, the
Lagrangian PDF of c is a bimodal function of the type
f�c ; t �x ,x0 , t0�=Q��1−c�+ �1−Q���c�, where Q is given in
Eq. �23�.

The average chemical source term W�x , t� is expressed
by the integral in Eq. �20� and, noting that
�Q�t �x ,x0 , t0� /�t=
�t �x ,x0 , t0�, it turns out to be

W�x,t� =
 
�
�t�x,x0,t0� − Dt�t − t0�

t0

t �


�x2 dt��PL

− 2Dt�t − t0�

t0

t �


�x
dt� ·

�PL

�x �dx0. �24�

Let x̄f�t� be the mathematical expectation of the instanta-
neous location of the flame surface, then, in the one-
dimensional case and zero mean velocity reference system,
the propagation of the plane turbulent flame is characterized
by the burning consumption rate Ut which is defined as
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dx̄f

dt
= Ut�t� = 


−�

+�

W�x,t�dx , �25�

where W�x , t� is the average chemical source term. We stress
here that, in the transient regime for small elapsed times, the
consumption rate is not equal to the speed of the flame front
edge, different from the stationary regime that we will con-
sider in the following.

Since it is assumed that particle trajectories are not af-
fected by chemical transformation, the diffusion coefficient
of the combustion process is the same of the nonreacting
passive scalar diffusion process. Then, at sufficiently large
time t�TL, the diffusion coefficient assumes the same equi-
librium value assumed in nonreacting systems and, in agree-
ment with Eq. �11�, the turbulent diffusion coefficient be-
comes practically constant Dt��u�2�TL= �u�2�1/2�L. In other
words, the instantaneous random appearance of products
with c=1 in the flame does not influence the transfer process.
This means that conclusions about a zero initial diffusivity of
volume with c=1, which are based on a straightforward ap-
plication of Taylor formula �2� to product particles following
an intuitive knowledge, are not theoretically justified, see
Sec. III.

The gradient form of Eq. �19� and the diffusion coeffi-
cient independence of the chemical source term �20� give the
above result on the null influence of the flame on the transfer
process. This result is obtained in spite of the random gen-
eration of product volumes by the chemical transformation,
then it could be in contradiction with the countergradient
transport that is experimentally established for premixed
flames. But, since the countergradient transport phenomenon
has a gas dynamical nature, because it is generated by the
fact that the pressure gradient accelerates the light products
more than the heavy reactants,5 when reactants and products
have the same density, there is no countergradient transport.
Hence, the present result, which is not in contradiction with
the nongradient turbulent flux because a constant density is
here assumed, is a remarkable result of the present analysis,
mainly because it is not intuitively expected.

Remembering that 
 is the PDF of the random time of
chemical transformation t�, as a consequence of the normal-
ization condition �t0

�
�t� �x ,x0 , t0�dt�=1, in the limit t→� it
follows that

�

�x



t0

�


�t��x,x0,t0�dt� =
�2

�x2

t0

�


�t��x,x0,t0�dt� = 0.

Hence, W�x , t� turns out to be

W�x,t� = 

−�

+�


�t�x,x0,t0�PL�x;t�x0,t0�dx0. �26�

For each particle, the burning instant is dependent on the
particle initial position, because the more the particle is ini-
tially distant from the initial flame, the later it will burn.
However, for large elapsed time, the motion of particles be-
comes independent of the initial position, and then also their
probability 
 to collide with the flame sheet becomes inde-
pendent of the initial condition, so we have

W�x,t� = 

−�

+�


�t�x,x0,t0�PL�x;t�x0,t0�dx0

= 
�t�x�

−�

+�

PL�x;t�x0,t0�dx0 = 
�t�x� . �27�

In the steady state regime, applying the change of variable
�=x−Ut

sst gives



−�

+�


�t�x�dx = 

−�

+�

W�x,t�dx

= 

−�

+�

W���d� = Ut
ss = const,

where Ut
ss is the steady state flame speed. To conclude, se-

lecting the coordinate system connected with the traveling
turbulent front, the parabolic diffusion equation �19� be-
comes

− Ut
ssdC

d�
= �u�2�TL

d2C

d�2 + W���, W��� = 
��� . �28�

We notice that the particular form of 
, which is the PDF of
the random instants when the chemical transformation of re-
actants in products takes place, is controlled by turbulence
and by the speed of the flamelet sheet. Here we do not con-
sider the particular form of 
 because our target is to show
that in the steady state flame the turbulent diffusion coeffi-
cient is Dt= �u�2�TL. This means that the random appearance
in the flame of products with c=1 does not influence the
transfer process, and the formal application of Taylor for-
mula �2� to this case is not physically justified. So specula-
tions on the increasing of the turbulent diffusion coefficient
across the steady state flame, motivated by the fact that from
Eq. �2� it follows a null diffusion coefficient for product
particles in the instant of their generation, are not theoreti-
cally supported.

However, since the main phenomenon that controls Ut
ss is

the traveling of the front of turbulent diffusion, the descrip-
tion of the steady state premixed combustion is not concep-
tually correct in the context of a parabolic diffusion equation.
In order to perform such analysis, a hyperbolic diffusion
equation based on hydrodynamics is derived in the next sec-
tion. We will see that, considering the flamelet combustion
mechanism, the speed of the steady state flame Ut

ss is mainly
controlled by the velocity of the passive diffusive turbulent
front U f.

IV. TURBULENT DIFFUSION WITH FINITE FRONT
VELOCITY AND PREMIXED COMBUSTION

A. A hyperbolic equation for turbulent transport

Diffusion with a finite front velocity is generally ob-
tained in literature by the telegraph equation, which is usu-
ally derived on the basis of random walk arguments.1 Here,
following Refs. 4 and 8, a hyperbolic equation with time-
dependent coefficient is derived on the basis of the unclosed
equations for the average concentration and the turbulent
flux of concentration fluctuation.
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Consider Navier–Stokes equation for the velocity field
u�x , t� and the scalar conservation equation for the concen-
tration field y�x , t�,

�ui

�t
+ u�

�ui

�x�

= −
1

�

�p

�xi
+ �

�2ui

�x� � x�

+ f i�x,t� , �29�

�y

�t
+ u�

�y

�x�

= Dm
�2y

�xi � xi
, �30�

where f�x , t� is a random force for unit volume that provides
a statistically steady state turbulence, � is the fluid density,
p�x , t� the pressure field, � the kinematic viscosity, Dm the
molecular diffusion coefficient, and the summation rule on
the repeated Greek indices is used.

Multiplying Eq. �30� by ui and Eq. �29� by y, using the
standard composition rule, i.e., ui=Ui+ui�, f i=Fi+ f i�, and
y=Y +y�, where capital letter and prime indicate average and
fluctuation, respectively, stated Ui=Fi=0, gives

�ui�
�y�

�t
� + �ui�u���

�Y

�x�

+ �ui�u��
�y�

�x�
�

= Dm�ui�
�y�

�x� � x�
� , �31�

�y�
�ui�

�t
� + �y�u��

�ui�

�x�
�

= −
1

�
�y�

�p�

�xi
� + ��y�

�2ui�

�x� � x�
� + �y�f i�� . �32�

Hence, averaging Eq. �30� and summing Eqs. �31� and �32�,
the following system of equations is obtained:

�Y

�t
+

��u��y��
�x�

= Dm
�2Y

�xi � xi
, �33�

��ui�y��
�t

+ �ui�u���
�Y

�x�

= −
��u��ui�y��

�x�

−
1

�
�y�

�p�

�xi
�

+ Dm�ui�
�2y�

�x� � x�
� + ��y�

�2ui�

�x� � x�
� + �y�f i�� .

�34�

System �33� and �34� requires a closure.
The random force f can be selected such that it acts at

low wave numbers, it is divergent free �i.e., it does not di-
rectly influence the pressure field�, and it is independent of
the velocity field.17,18 This choice means that the correlations
concentration-pressure and concentration-velocity do not de-
pend on f i�x , t�, but also that the velocity-force correlation
vanishes17 as well as the concentration-force correlation and
then �y�f i��=0.

In turbulent flows, the molecular diffusion effects em-
bodied by Dm can be neglected with respect to turbulent
diffusion effects. But the results derived with this neglect
must be correct also for applications in premixed combus-

tion. With respect to this, we remind that in Sec. II it has
been highlighted that here it is considered a premixed com-
bustion process with constant laminar flame speed SL and
zero laminar flame thickness �L, whose estimations are given
by SL��Dm /�ch�1/2 and �L��Dm�ch�1/2, where �ch is the
chemical time. This means that in the limit of infinite
Damköhler number, i.e., �ch→0, the molecular diffusion Dm

is such that lim�ch→0 Dm /�ch=const, hence for this kind of
process, Dm→0. These arguments and assumptions motivate
to disregard Dm and assure that there is no propagation of
error when results obtained with this neglect are applied in
turbulent premixed combustion. Then, hereinafter, we state
Dm=0.

Finally, the right-hand side �RHS� of Eq. �34� reduces to

��u��ui�y��
�x�

+
1

�
�y�

�p�

�xi
� − ��y�

�2ui�

�x� � x�
� ,

where, in order to have turbulent energy dissipation, the ki-
nematic viscosity must be ��0, and then, to have stationary
turbulence, the turbulent energy generated by the force f�x , t�
is equal to the constant mean dissipation rate.17,18 But, with
the hypothesis that turbulent diffusion is controlled in gen-
eral by the Lagrangian velocity fluctuation autocorrelation
function BL�t�, for infinite Reynolds number the RHS of Eq.
�34� can be assumed to be independent of � and to be depen-
dent on �ui�y��, which preserves the dependence on �x , t�, and
on a functional of BL�t� which includes the parameter TL:
�=��BL�t� ,TL	=��t ,TL�. This assumption can be applied
also to the addendum with the pressure fluctuation p� be-
cause, from dimensional arguments, it can be expressed in
terms of the velocity fluctuation. To conclude, invoking the
�-theorem,19 the closure is

��u��ui�y��
�x�

+
1

�
�y�

�p�

�xi
� − ��y�

�2ui�

�x� � x�
�

=
��t,TL�

TL
�ui�y�� . �35�

Closure �35� is different from the previous one.8,4 In fact,
the present includes the time-dependent function � that is
fundamental to describe all dispersion regimes. Finally, the
transport equation turns out to be

�2Y

�t2 +
��t,TL�

TL

�Y

�t
=

��ui�u���
�xi

�Y

�x�

+ �u��ui��
�2Y

�xi � x�

. �36�

From homogeneity and isotropy, it follows that �ui�u���
= �u�2��i� and then Eq. �36� becomes

�2Y

�t2 +
��t,TL�

TL

�Y

�t
= �u�2�

�2Y

�x2 , �37�

where x stands for each Cartesian component xi.
The idea of lumping the transport term with the pressure

term is based on the fact that the pressure term is propor-
tional to the square of velocity fluctuations, i.e., p���u�2,
and then the terms ��u��ui�y�� /�x� and �−1�y��p� /�xi� have
the same dimensional representation. Since the model is
complete, that is there are no empirical parameters, the fac-
tors of proportionality can be merged in the unique factor
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��t ,TL�=�u+�p, where �u and �p are the factors of propor-
tionality for the transport and the pressure term, respectively.
The lumping of the viscous term with the transport and the
pressure terms follows from the fact that they have the same
physical dimension. But, since an infinite high Reynolds
number flow is considered, the resulting closure is indepen-
dent of viscosity. The most important step, which makes the
present closure strongly different from those generally intro-
duced in literature, is that here the transport equation �35� is
generated by the coupling of the Navier–Stokes and the mass
conservation equations, see system �28� and �29�. From this
fact, it follows that the turbulent flux term does not need a
closure, e.g., the classical gradient model, because it is de-
termined by the evolution equation �33� and the requirement
of a closure is moved to the RHS of Eq. �33�. This result is
mainly due to dimensional arguments that yield a linear pro-
portionality of the RHS in Eq. �33� with the turbulent flux
�ui�y��.

The analysis of the characteristics of Eq. �37� shows that
the front velocity U f, for any arbitrary ��t ,TL�, is

U f = �u�2�1/2. �38�

The Lagrangian properties of transport process �37� can be
derived. In fact, for a �-function initial condition, the particle
displacement x2 is x2=�x2Y�x , t�dx, and then multiplying Eq.
�37� by x2 and integrating in dx, using definition �9�, gives

d2x2

dt2 +
��t,TL�

TL

dx2

dt
= 2�u�2� . �39�

Imposing the agreement with Taylor statements on disper-
sion, see formula �6�, Eq. �39� yields the following determi-
nation of ��t ,TL�:

��t,TL� = TL
�u�2� − BL�t�
�0

t BL���d�
. �40�

This means that, with ��t ,TL� defined as in Eq. �40�, Eqs.
�37� and �39� hold at all times and they meet Taylor state-
ments for an arbitrary Lagrangian velocity fluctuation auto-
correlation function BL�t�.

When t→0, applying the Taylor expansion BL��u�2�
+dBL /dt�t=0�t+¯ gives

��t,TL� � − TL
dBL/dt�t = 0�

�u�2�
, t → 0, �41�

which is positive because BL�t� is a decreasing function
at the origin and then dBL /dt�t=0��0. Moreover, if
dBL /dt�t=0�=0, when t→0, function ��t ,TL� tends to 0.
When t→�, since BL→0 and �0

t BL���d�→ �u�2�TL, it fol-
lows from Eq. �40� that

��t,TL� → 1, t → � . �42�

When an exponential autocorrelation function is chosen,
namely, BL�t�= �u�2�exp�−t /TL�, it follows from Eq. �40� that
��t ,TL�=1 for all times and Eq. �37� reduces to

TL
�2Y

�t2 +
�Y

�t
= �u�2�TL

�2Y

�x2 , �43�

which is the telegraph equation. This means that previous
formulation8,4 holds only for very large elapsed times, or it
implicitly assumes an exponential correlation function BL�t�,
because � is taken constant.

Equation �43� has a number of good properties for tur-
bulent transport modeling: �i� it is a Eulerian-type equation
with constant coefficient; �ii� it generates a particle diffusion
process in agreement with Taylor statements; �iii� it is con-
sistent with an exponential Lagrangian velocity fluctuation
autocorrelation function; and �iv� it describes a diffusion pro-
cess with finite velocity front.

B. Relationships between the velocity of turbulent
diffusion front and that of turbulent premixed
flame in the flamelet combustion mechanism

In order to analyze premixed combustion, the scalar con-
servation equation �30� for the instantaneous concentration
field y�x , t� is now referred to the progress variable c�x , t�
and it is modified to take into account a constant laminar
flame speed SL as

�c

�t
+ u�

�c

�x�

= SL��c� , �44�

where also a constant density is assumed to use, in what
follows, the results from previous section. Considering
Navier–Stokes equations �29�, a system of equations analog
to Eqs. �33� and �34� can be derived and, after using closure
�35�, it turns out to be

�C

�t
+

��u��c��
�x�

= SL���c�� , �45�

��ui�c��
�t

+ �ui�u���
�C

�x�

+
��t,TL�

TL
�ui�c�� = SL�ui���c�� . �46�

System �45� and �46� requires equations for ���c�� and
�ui���c��. Let n̂�x , t�=−�c / ��c� be the unit vector which gen-
erally depends on both space and time and it is directed
normal to a local isosurface pointing toward reactants. From
the property n̂ · n̂=1, it emerges that n̂ ·�n̂ /�t= n̂ ·�n̂ /�xi=0
and the following identities can be derived:

� ��c�
�t

= − n̂ · �
�c

�t
and

� ��c�
�xi

= − n̂ · �
�c

�xi
.

Then from Eq. �44�, it follows that

� ��c�
�t

+
�u�� ��c�

�x�

= − ��c��n̂n̂:�u�� − SLn̂ · ���c� , �47�

where n̂n̂ :�u�=ninj�uj� /�xj. Considering again Navier–
Stokes equations �29� and applying previous formalism,
equations for ���c�� and �ui���c�� constitute the new system

����c��
�t

+
��u�� ��c��

�x�

= − ���c��n̂n̂:�u��� − SL�n̂ · ���c�� ,

�48�
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��ui���c��
�t

+
��t,T�c�

T�c
�ui���c��

= ���c��
��ui�u���

�x�

− �ui���c��n̂n̂:�u���

− SL�ui�n̂ · ���c�� , �49�

where ��t ,T�c� and T�c are defined by the following closure:

��u��ui���c��
�x�

+
1

�
���c�

�p�

�xi
� − ����c�

�2ui�

�x� � x�
�

=
��t,T�c�

T�c
�ui���c�� , �50�

which is similar to Eq. �35�.
Combining Eqs. �45� and �46� and using Eq. �48� gives

�2C

�t2 +
��t,TL�

TL

�C

�t
= �ui�u���

�2C

�xi � x�

+
��ui�u���

�xi

�C

�x�

+ SL
2 �2C

�x� � x�

+
W�x,t�

TL
, �51�

where

W�x,t�
TL

= SL
��t,TL�
TL

���c��

− 2
��u�� ��c��

�x�

− ���c��n̂n̂:�u���� . �52�

Finally, from homogeneity and isotropy, Eq. �51� reduces to

TL
�2C

�t2 + ��t,TL�
�C

�t
= ��u�2� + SL

2	TL
�2C

�x2 + W�x,t� , �53�

where x stands for each Cartesian component xi. Since the
average source function W�x , t� defined in Eq. �52� does not
contain the terms �2C /�t2 and �2C /�x2, from the analysis of
characteristics of Eq. �53�, the front edge flame speed Ufe

turns out to be

Ufe = ��u�2� + SL
2�1/2 = �U f

2 + SL
2�1/2. �54�

Hence, taking into account that in the stationary traveling
flame case all isosurfaces have the same velocity, in the
steady state regime the value of the consumption rate Ut,
which is defined in Eq. �25�, turns out to be equal to the front
edge flame speed Ufe and, hereinafter, we refer to this value
as the flame speed Ut

ss,

Ut
ss = Ufe = ��u�2� + SL

2�1/2. �55�

This means that the speed of the steady state flame Ut
ss does

not depend on the particular form of the chemical source W.
Furthermore, in the case of strong turbulence, this theoretical
result justifies and refines the classical estimation10

Ut
ss��u�2�1/2 by the formula

Ut
ss � �u�2�1/2�1 +

1

2

SL
2

�u�2�
� . �56�

Formula �55� is important also because it shows that the
commonly accepted expression for the steady state speed

Ut
ss��u�2�1/2+SL, which follows from intuitive knowledge, is

not consistent with a more statistically accurate analysis as
that one here developed.

Moreover, formula �55� turns out to be important even
for quantitative reasons. In fact, when U f �SL the classical
estimation of Ut

ss gives 2U f while the present estimation
gives �2U f, then the percentage error is ��2−�2� /�2	�100
�40%, which is not negligible in applications.

Refined estimation �56� of the turbulent flame velocity in
the steady state for strong turbulence can be compared with
other formulas in literature which differ from classical
Damköhler estimation. In particular, a previous formula de-
rived by Yakhot11,20 for the density constant case in our no-
tation reads

Ut
ss � �u�2�2�ln� �u�2�1/2

SL
��−1/p

,
�u�2�1/2

SL
→ � ,

so that Ut
ss
 �u�2�1/2. However, this estimation has been ob-

tained as extrapolation abroad the validity domain of the
considered assumptions.11 Differently, formula �56� is ob-
tained working into the validity domain of the assumptions
here considered.

A further comparison can be performed with the recent
formula derived by Kolla et al.,12,21 which looks to be dif-
ferent from classical estimation. It includes also the heat re-
lease effects, so it can be considered a refinement for the
derivable density case. However, when density is assumed
constant, it reduces to the Damköhler estimation. To con-
clude, the formula of Kolla et al. is a refinement of
Damköhler estimation when derivable density is taken into
account, while our formula �56� is an effective theoretical
based quantitative refinement of the Damköhler estimation.

To conclude, it is also pertinent to compare formula �55�
with the well-known Kolmogorov–Petrovskii–Piskunov
�KPP� solution,21

Ut
ss = 2�Dt

Sc
� �W

�C
�

C→0
, �57�

where Dt= �u�2�TL=const and Sc is the Schmidt number. For-
mula �57� was originally obtained for a reaction-diffusion
system introduced for a biological problem,22 and now it is
used in literature for the prediction of the speed of the tur-
bulent premixed flame. Comparing Eqs. �55� and �57� in
strong turbulence ��u�2�1/2�SL�, it follows that

4� �W
�C

�
C→0

�
Sc

Dt
�u�2� . �58�

At a first glance, it appears that formula �55�, and so also
Damköhler’s estimation, is not consistent with KPP approach
�57�, because from Eq. �58� it follows that the derivative of
the mean chemical source at the front edge ��W /�C�C→0

turns out to be dependent on the combination of some turbu-
lence characteristics. However, as it is discussed by Zeldov-
ich et al.,23 the KPP tool is applicable in combustion for the
analysis of cold flame, where combustion is controlled by the
kinetics of isothermal chain reactions, i.e., flames without
visible increasing of the temperature as experimentally ob-
served in some mixtures. In particular, in the same book23 at
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p. 129, one can read: “The propagation of a cool flame can
be treated as the continuous introduction of seed particles
into the fresh mixture by means of diffusion. Thus, the flame
velocity �57� is determined by the local rate of production of
active centers near the boundary of the cool flame with the
fresh mixture �for C→0� and is independent of the form of
this rate function inside the cool flame front. For thermal
flame propagation, on the other hand, the velocity is deter-
mined by the integral of the rate of heat release over the
entire chemical reaction zone.” In our case, the seeds are
particles with C=1 introduced into the fresh mixture, which
has C=0, by the large turbulent eddies that drive also the
velocity of the turbulent diffusion front U f, which is here
theoretically estimated in Eq. �38�. Then the processes near
the front edge �similar to the case of catalytic combustion�
control the flame speed. In the transient flame �including the
analyzed initial stage�, which precedes the steady state re-
gime, the assumption of the KPP theory is not valid, so its
application in this case seems to be questionable. The physi-
cal reason is that, different from the steady state regime, in
the transient stage the consumption rate is not equal to the
velocity of the front edge of the flame: the former is equal to
the integral of the chemical source across the flame, while
the latter is controlled mainly by the turbulent diffusion and
at strong turbulence it does not depend on the chemical
source.

C. Discussion on the steady state flame

The steady state flame is not observed in laboratory
flames and then doubts can arise on its existence. However,
this fact can be explained by the estimation of the necessary
elapsed time for the steady state premixed flame to take
place.

Consider the case �u�2�1/2�SL. During a significant tem-
poral interval, the increasing of the flamelet dispersion prac-
tically does not depend on the relatively small SL, so in this
regime the width of the turbulent flame grows. Remembering
Ut�t�=dx̄f /dt to be the consumption rate where x̄f is the
mathematical expectation of the flame location, then the
turbulent flame width �t�t� is given by �t�t��	 f�t�
��2�u�2�TLt�1/2, where 	 f

2�t�= �x− x̄f�t�	2.
A strong influence of small flamelet speed on the flame

width occurs when the transport due to the velocity fluctua-
tions and that due to the flamelet travel are of the same order.
This means that there exists a time �ss such that
�2�u�2�TL�ss�1/2�SL�ss, and then the steady state regime is
obtained when t��ss�TL�u�2� /SL

2, and from Eq. �56� the
flame speed turns out to be Ut

ss��u�2�1/2.
This timescale estimation can be used to explain why the

steady state flame is not observed in the laboratory flames. In
fact, let us consider the Bunsen burner with the following
characteristic flow parameters: �u�2�1/2 /w=10−1, �L /d=10−1,
and SL / �u�2�1/2=10−1, where w and d are the velocity and the
diameter of the flow. Since the order of the magnitude of the
flame speed is Ut

ss��u�2�1/2, the length of the conical
Bunsen flame �the height of the prolate cone� is equal to
��0.5dw /Ut

ss. Using the characteristic values of the param-
eters gives ��TLw��u�2�1/2 /SL�. Hence, the residence time

in the Bunsen flame is of the order of TL��u�2�1/2 /SL�
�101TL, while the steady state flame takes place for times
much more larger than �ss�TL�u�2� /SL

2 �102TL. Further-
more, even when �u�2�1/2�SL the residence time is compa-
rable with TL but �ss�TL. This estimation explains why the
width of the flame increases beginning from the edge of the
Bunsen burner until the flame crosses and combustion
ceases. Similar estimation can be done for the V-flame. How-
ever, direct numerical simulations show the existence of the
steady state flame,24–26 which corresponds to the realization
of an ideal experiment where the plane flame must travel for
a long time in the reactant medium with uniform and station-
ary turbulence.

We remind here that a quasiconstant flame speed
occurs also during the intermediate temporal interval
TL� t�TL�u�2� /SL

2. In this interval, the dispersion of the
flamelet, which is mainly controlled by the large-
scale wrinkles, is 	 f

2�t��2�u�2�TLt, i.e., the flame width is
�t�t���Dtt�1/2 and it does not depend on SL. But, at the same
time, the consumption rate Ut, which is also estimated by

Ut�t�=SL�Ā /A0�, where Ā�t� /A0 is the average dimensionless
flame sheet area so that Ut�t0�=SL, strongly depends on SL,

because the dimensionless flamelet surface area Ā is mainly
controlled by small-scale wrinkles, which are smoothed by
the traveling flamelet. If it is assumed the statistical equilib-
rium between the generation by turbulence of the small-scale
wrinkles of the flamelet surface and their consumption due to
the flamelet surface traveling, the consumption rate Ut turns
out to be quasiconstant in time. Such turbulent premixed
flames with nearly constant consumption rate and increasing
width prevail in typical laboratory flames: the conical flame
in the Bunsen burner and the reverse conical V-flame in uni-
form flow of combustible mixture behind a stabilizer. The
same result is experimentally obtained for the Bunsen
flame27 and both experimentally and by direct numerical
simulations for the V-flame.28

As a concluding remark, we cite that a quantitative
analysis of the problems mentioned above can be developed
in the context of Kolmogorov approach,4 which is based on
the statistical equilibrium of the small-scale and on the sta-
tistical nonequilibrium of the large-scale of the hydrody-
namical structures in turbulent flows, by invoking some gen-
eral statistical properties of random surfaces and the
dimensional theory.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed two Lagrangian proper-
ties of turbulent diffusion that, even if they are ignored in the
Eulerian approach used for the description of heat and mass
transfer, are important in several applications, in particular in
turbulent premixed combustion. The analyzed properties are
connected �i� with the existence of a finite integral correla-
tion time of Lagrangian particle velocity that yields a
memory effect on particle motion and a turbulent diffusion
coefficient which is not constant in time and �ii� with the
forming of a front of turbulent diffusion constrained by the
physical restrictions on the velocity of Lagrangian particles.
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Here, the Lagrangian properties analyzed are important
in the temporal interval 0� t�TL, when the turbulent diffu-
sion coefficient is not in equilibrium and the flame has an
increasing consumption rate Ut�t� and width �t�t�, and for
very large elapsed times t�TL�u�2� /SL

2, when the constant
flame speed Ut

ss is controlled by the speed of the turbulent
front and practically it does not depend on SL.

The analysis refers to turbulent premixed flame in the
mathematical framework where combustion takes place in a
strongly wrinkled flamelet surface that travels with constant
speed SL. In order to avoid the influence of combustion on
turbulence, which is assumed homogeneous, isotropic, and
stationary, the density is stated constant so that passive
chemical reaction is actually considered. This choice deletes
countergradient phenomenon, which is a consequence of
density variability because the pressure gradient gives
different acceleration to the light products and to the heavy
reactants.

Here, the results derived are obtained on the basis of
physical assumptions that yielded formulas which do not re-
quire any empirical parameters. This property follows from
the fact that some of these results are kinematical and the
Lagrangian correlation function is assumed known.

We have analyzed the following questions:

�1� The transient behavior of Lagrangian turbulent diffusion
coefficient in premixed flame, which is the driving pro-
cess in the raising of the developed flame, that is impor-
tant, for example, to have an accurate modeling of the
initial stage of combustion in the SI engine;

�2� The relationship of the velocity of the steady state flame
at large times with the theoretically predicted finite
speed of the front of turbulent diffusion, which is con-
nected with the physical restrictions on the velocities of
the Lagrangian particles.

The main results are the following:

�1� The arbitrary chemical transformation of Lagrangian
particles does not influence the turbulent diffusion coef-
ficient that remains the same for nonreacting system,
during both the nonequilibrium and the equilibrium re-
gimes. This result follows from the expression of the
arbitrary average chemical source term W�x , t� that
here, different from other representations, it is written in
the Lagrangian framework �20�. Then, the present analy-
sis proves that the intuitive understanding about an ini-
tial zero diffusivity of product particles in the instant of
their appearance is not correct in premixed combustion.
Moreover, from formula �20�, it follows also that the
spatial structure of the chemical source term is depen-
dent on the particle diffusive motion.

�2� We have shown that in the flamelet combustion mecha-
nism, the speed of the front edge of the turbulent flame
is equal to Ufe= ��u�2�+SL

2�1/2, and hence at large time
�t→��, when the flame is in the steady state, we have
Ut

ss=Ufe= ��u�2�+SL
2�1/2. This result follows from the de-

duced hyperbolic equation �53� for the mean progress
variable with the average chemical source term W�x , t�

written in general form. For purely diffusive case, i.e.,
W=0, this hyperbolic equation with constant coeffi-
cients satisfies the Taylor theory with an exponential La-
grangian correlation function. However, we have also
shown that for an arbitrary autocorrelation function, this
hyperbolic equation exactly satisfies the Taylor theory
with time-dependent coefficients �37�–�40�. The result
obtained for the flame speed gives, in the case of
strong turbulence, the theoretically founded estimation
Ut

ss��u�2�1/2�1+ �1 /2�SL
2 / �u�2�	, which is more accurate

than the classical intuitive formula10 Ut
ss��u�2�1/2,

and, in the case of moderate turbulence, from formula
�55� it emerges that the commonly used estimation
Ut

ss��u�2�1/2+SL is not consistent with an accurate sta-
tistical analysis. The present formula �55� and the clas-
sical estimation of Ut

ss give results that differ for a per-
centage error of 40%, which is not negligible for
applications.
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