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a b s t r a c t

In recent years the interest around the study of anomalous relaxation and diffusion
processes is increased due to their importance in several natural phenomena. Moreover,
a further generalization has been developed by introducing time-fractional differentiation
of distributed orderwhich ranges between0 and1.We refer to accelerating processeswhen
the driving power law has a changing-in-time exponent whose modulus tends from less
than 1 to 1, and to decelerating processes when such an exponent modulus decreases in
time moving away from the linear behaviour. Accelerating processes are modelled by a
time-fractional derivative in the Riemann–Liouville sense, while decelerating processes
by a time-fractional derivative in the Caputo sense. Here the focus is on the accelerating
case while the decelerating one is considered in the companion paper. After a short
reminder about the derivation of the fundamental solution for a general distribution of
time-derivative orders, we consider in detail the triple-order case for both accelerating
relaxation and accelerating diffusion processes and the exact results are derived in terms
of an infinite series of H-functions. The method adopted is new and it makes use of
certain properties of the generalized Mittag-Leffler function and the H-function, moreover
it provides an elegant generalization of themethod introduced by Langlands (2006) [T.A.M.
Langlands, Physica A 367 (2006) 136] to study the double-order case of accelerating
diffusion processes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Anomalous dynamics is frequently met in processes through complex and/or disordered media, e.g. dispersion in plas-
mas [1] or diffusion with obstacles [2] or binding [3], self-diffusion of surfactant molecules [4] or protein movements [5,6],
and light scattering in a cold atomic cloud [7]. A useful mathematical tool for physical investigation and description of such
phenomena is fractional calculus, see for example Refs. [8–13] for anomalous relaxation and Refs. [14–20] for anomalous
diffusion. Recently, the extension of fractional differential equations to distributed-order fractional differential equations
has permitted to describe also processes whose scaling law changes in time [21–23,12,24–28]. However an early idea of the
time-fractional derivative of distributed order was proposed in 1969 by Caputo [29], and later re-proposed by Caputo him-
self [30,31] and Bagley and Torvik [32,33]. In particular, when the time-fractional derivative operator is opportunely chosen,
it permits to model phenomena whose driving power law can be expressed by a growing-in-time exponent modulus that
from less than 1 tends to 1, or an exponent modulus that decreases in time moving away from the linear behaviour, and we
refer to them as accelerating and decelerating processes, respectively [34,35]. The accelerating processes are modelled by a
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Riemann–Liouville (R–L) time-fractional derivative while the decelerating processes by a Caputo (C) time-fractional deriva-
tive. However, when single-order fractional differential equations are considered the two forms (R–L) and (C) are equivalent.
The present paper is focused on the accelerating case while the decelerating case is considered in the companion paper [36].

A double-order time-fractional diffusion equation has been exactly solved by Langlands [37,38]. The main object of the
present article is to further include one more fractional time derivative and investigate its solution by the application of the
generalized Mittag-Leffler function. Then the triple-order time-fractional differential equations considered in the present
paper are:

du
dt

= −λ

P tD1−α

+ Q tD1−β
+ T tD1−γ


u(t), t ∈ R+

0 , (1)

∂u
∂t

=

P tD1−α

+ Q tD1−β
+ T tD1−γ

 ∂2

∂x2
u(x, t), t ∈ R+

0 , x ∈ R, (2)

with 0 < α < β < γ < 1, where λ is a positive constant and tDν is the Riemann–Liouville time-fractional derivative
operator of order ν > 0 [39,40], which for a sufficiently well-behaved function f (t) is defined as

tDν f (t) =


dm

dtm

[
1

Γ (m − ν)

∫ t

0

f (τ ) dτ
(t − τ)ν+1−m

]
, m − 1 < ν < m,

dm

dtm
f (t), ν = m.

(3)

The rest of the paper is organized as follows. In Section 2 the fundamental solution for a general distribution of time-
derivative orders is recalled together with general considerations which motivate the name accelerating. In Section 3 the
exact solutions for both triple-order time-fractional relaxation and diffusion equations are obtained using a new method
based on certain properties of Mittag-Leffler and H-functions. Concluding remarks are given in Section 4.

2. Accelerating time-fractional relaxation and diffusion

2.1. Accelerating time-fractional relaxation equation

The equation of accelerating time-fractional relaxation is

du
dt

= −λ

∫ 1

0
p(ν)tD1−νu(t) dν, u(0+) = 1, λ ∈ R+, t ∈ R+

0 , (4)

where p(ν) ≥ 0 is the weight function of the fractional order derivative, which is taken normalized; i.e.
 1
0 p(ν) dν = 1.

A general theoretical analysis of time-fractional relaxation of distributed order can be found in Ref. [12]. Let the Laplace
transform for a generic function w(t) be defined as:

L {w(t); s} = w(s) :=

∫
+∞

0
e−stw(t) dt, s ∈ C.

We recall that, if the limiting values of the k-integer derivativesw(k)(0+) for k = 0, 1, 2, . . . are finite, the Laplace transform
of the Riemann–Liouville fractional derivative of non-integer order ν defined in the first line of (3) isL{tDνw(t); s} = sνw(s),
see Ref. [41, formula (1.15)] or Ref. [42, Ch. 1 formula (1.29)]. Then, applying the Laplace transform to (4) gives

u(s) =
1

s + λA(s)
, (5)

where

A(s) = s
∫ 1

0
p(ν)s−ν dν. (6)

In the case of singular order, i.e. p(ν) = δ(ν − ν0), it turns out that (5) is the same as in the decelerating case [36] and both
provide the same result of the simple fractional relaxation.

By inverting the Laplace transform in (5) the fundamental solution u(t) of the accelerating time-fractional relaxation
equation of distributed order (4) is obtained. Solution u(t) can be represented by the following Laplace inversion
formula [43,44, pp. 31–33], referred also to as the Titchmarsh theorem as for example in Refs. [22,23,12,24],

u(t) = −
1
π

∫
∞

0
e−rt Im

u 
reiπ


dr, (7)

and the expression of −Im {1/[s + λA(s)]} is needed along the ray s = r eiπ with r > 0 (the branch cut of the function s−ν).
When the function A(s) defined in (6) is rewritten as

A

r eiπ


= ρ cos(πγ ) + iρ sin(πγ ), (8)
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whereρ = ρ(r) =
A 

r eiπ
 ,

γ = γ (r) =
1
π

arg

A


r eiπ


,

then the fundamental solution of (4) turns out to be

u(t) =

∫
∞

0
e−rtH(r, λ) dr, (9)

with

H(r, λ) =
1
π

λρ sin(πγ )

r2 − 2λrρ cos(πγ ) + λ2ρ2
≥ 0. (10)

Since H(r, λ) is a non-negative function of r for any λ ∈ R+, the fundamental solution u(t) is completely monotonic.
In order to highlight the accelerating property, the asymptotic expressions for t → 0 and t → ∞ of the fundamental

solution u(t) are provided. According to the Tauberian theory of Laplace transforms, the asymptotic behaviour of a function
w(t) near t = ∞ and t = 0 is (formally) obtained from the asymptotic behaviour of its Laplace transform w(s) for s → 0+

and for s → +∞, respectively. The asymptotic representations of (5) are [12]

u(s) ∼


1

λA(s)
, s → 0+, when A(s)/s ≫ λ,

1
s

[
1 − λ

A(s)
s

]
, s → +∞, when A(s)/s ≪ 1/λ.

As it is shown for a double-order case in Ref. [12], i.e. p(ν) = p1δ(ν − ν1) + p2δ(ν − ν2), 0 < ν1 < ν2 ≤ 1,

u(t) ∼


1 − λp1

tν1

Γ (1 + ν1)
, t → 0+,

1
λp2

t−ν2

Γ (1 − ν2)
, t → +∞,

from which follows the name accelerating relaxation, because, remembering that 0 < ν1 < ν2 ≤ 1, the modulus of the
exponent of the relaxation power law increases towards 1 when the time increases.

2.2. Accelerating time-fractional diffusion equation

The equation of accelerating time-fractional diffusion is

∂u
∂t

=

∫ 1

0
p(ν)tD1−ν

[
∂2

∂x2
u(x, t)

]
dν, u(x, 0+) = δ(x), t ∈ R+

0 , x ∈ R, (11)

where the weight function p(ν) has the same properties as in Section 2.1. For a general study of accelerating time-fractional
differential equations of distributed order, see Refs. [22,24].

The fundamental solution of the time-fractional diffusion equation of distributed order (11) can be obtained by applying
in sequence the Fourier and Laplace transforms. Let the Fourier transform for a generic function v(x) be defined as:

F {v(x); κ} = v(κ) :=

∫
+∞

−∞

eiκxv(x) dx, κ ∈ R,

then, in the Fourier–Laplace domain, noting thatδ(κ) ≡ 1, Eq. (11) becomes

u(κ, s) − 1 = −κ2
[∫

∞

0
p(ν)s1−ν dν

]u(κ, s), (12)

and using definition (6) of function A(s)

u(κ, s) =
1

s + κ2A(s)
. (13)

In the particular case of time-fractional diffusion of single order, i.e. p(ν) = δ(ν − ν0) (0 < ν0 ≤ 1), accelerating and
decelerating processes [36] provide the same result.

In order to determine the fundamental solutionsu(x, t), Eq. (13)must be invertedwith respect to both Fourier and Laplace
transformation. However, the inversion of Laplace transformation has been obtained for the relaxation equation and then
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we have to invert the remaining Fourier transform. In fact, setting λ = κ2, Eq. (13) is equal to (5). Then, since u(x, t) is
symmetric in x, using (9) the fundamental solution of (11) is given by

u(x, t) =
1
π

∫
+∞

0
cos(κx)

∫
∞

0
e−rtH(r, κ2) dr


dκ, (14)

where H(r, κ2) is the same as defined in (10). When the Caputo fractional derivative is used, the Fourier integral (14)
has been carried out by Mainardi and Pagnini [25] by the method of the Mellin transform. However, in Refs. [22,24] the
relationships are derived between the fundamental solutions of distributed order time-fractional diffusion equations with
Caputo and Riemann–Liouville fractional derivatives. Finally, the fundamental solution u(x, t) in (14), for x ≥ 0, reads

u(x, t) =
1

2πx

∫
∞

0

e−rt

r
F∗(ρ

1/2
∗

x) dr, (15)

where

F∗(ρ
1/2
∗

x) =
1

2π i

∫ σ+i∞

σ−i∞
Γ (1 − s) sin(πγ∗s/2)(ρ1/2

∗
x)sds, (16)

with ρ∗(r) = r/ρ(r) and γ∗(r) = 1 − γ (r). The series expansion of F∗ yields the required solution

u(x, t) =
1
2π

∞−
k=0

(−x)k

k!
ϕk(t), x ≥ 0, (17)

with

ϕk(t) =

∫
∞

0

e−rt

r
sin[πγ∗(k + 1)/2] ρ(k+1)/2

∗
dr. (18)

An alternative representation of F∗ reads [22,24]

F∗(ρ
1/2
∗

x) = Im {ρ1/2
∗

x eiπγ∗/2e−eiπγ∗/2ρ
1/2
∗ x

}

= ρ1/2
∗

x e−ρ
1/2
∗ xcos(πγ∗/2) sin[πγ∗/2 − ρ1/2x sin(πγ∗/2)], (19)

which gives amore convenient representation in comparison to the series (17) to plot the solution from the numerical point
of view, when it is inserted in (15).

To classify the type of diffusion as accelerating the behaviour in time of the variance σ 2(t) defined as

σ 2(t) :=

∫
+∞

−∞

x2u(x, t) dx, (20)

which is related to the Fourier transform by

σ 2(t) = −
∂2

∂κ2
u(κ = 0, t), (21)

is relevant. This means that we have to invert only the Laplace transform and then take into account the Fourier transform
for κ near zero. Finally, from (13) we haveu(κ, s) =

1
s


1 − κ2 A(s)

s
+ · · ·


,

and thenσ 2(s) = −
∂2

∂κ2
u(κ = 0, s) =

2A(s)
s2

.

As for the relaxation equation, considering the double-order case gives [22,24]

σ 2(t) ∼


2p1

tν1

Γ (1 + ν1)
, t → 0+,

2p2
tν2

Γ (1 + ν2)
, t → +∞,

where p1, p2, ν1 and ν2 are the same as for the double-order case considered for accelerating relaxation, and then the name
accelerating diffusion follows, because, remembering that 0 < ν1 < ν2 ≤ 1, the exponent of the diffusion power law
increases towards 1 when the time increases.

3. Solutions of triple-order accelerating relaxation and diffusion

In this section we present a new method to calculate the exact solution of the triple-order time-fractional differential
equation of accelerating relaxation (1) and accelerating diffusion (2), which is based on the Prabhakar generalization
of the Mittag-Leffler function, see Appendix B. In general, the self-similarity of solutions of the ordinary single-order
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time-fractional equations is due to the unique derivative order, so that such self-similarity is lost in distributed cases. In
particular, for discrete distributions of derivative orders, the number of time scales of solutions is equal to the number of
derivative orders, so that in the case under consideration the time scales of solutions are three.

3.1. Triple-order accelerating relaxation

The triple-order time-fractional differential equation for accelerated anomalous relaxation (1) is derived by (4) with the
weight function

p(ν) = Pδ(ν − α) + Q δ(ν − β) + Tδ(ν − γ ), (22)

with P + Q + T = 1 by normalization, and the Laplace transformed solution corresponding to (5) is

u(s) =
sα−1

sα + λP
sα + λP

sα + λP + λQsα−β + λTsα−γ
. (23)

Using the following formula

1
1 + ξ

=

∞−
m=0

(−1)mξm, |ξ | < 1, (24)

the second fraction on the RHS of (23) turns out to be

u(s) =
sα−1

sα + λP

∞−
m=0

(−1)mλmQm(sα−β
+ T/Qsα−γ )m

(sα + λP)m
. (25)

Moreover, using the series representation

(a + ξ)m =

m−
ℓ=0

m
ℓ


ξ ℓam−ℓ, (26)

we have that
sα−β

+
T
Q
sα−γ

m

=

m−
ℓ=0

m
ℓ

 
T
Q

ℓ

s(α−β)m+(β−γ )ℓ, (27)

and the Laplace transform of the solution emerges to be

u(s) =

∞−
m=0

(−1)mλmQm

(1 + λPs−α)m+1

m−
ℓ=0

m
ℓ

 
T
Q

ℓ

sβ(ℓ−m)−γ ℓ−1. (28)

Finally, from the Laplace transform pair (B.5), the fundamental solution of (1) is

u(t) =

∞−
m=0

(−1)m

λQtβ

m m−
ℓ=0

m
ℓ

 
T
Q

ℓ

t(γ−β)ℓEm+1
α,γ ℓ+β(m−ℓ)+1(−λPtα), (29)

which in terms of H-function (see Appendix A) is

u(t) =

∞−
m=0

(−1)m

m!


λQtβ

m
×

m−
ℓ=0

m
ℓ

 
T
Q

ℓ

t(γ−β)ℓH1,1
1,2

[
λPtα

 (−m, 1)
(0, 1), [β(ℓ − m) − γ ℓ, α]

]
, (30)

where the H-function representation of the generalized Mittag-Leffler (B.7) is used.
It is worth noting here that in (29) the Prabhakar generalization of the Mittag-Leffler function Em+1

α,γ ℓ+β(m−ℓ)+1(−λPtα),
which is defined in (B.3), can be expressed in terms of themth-derivative of the two-parameter Mittag-Leffler function (B.2)
by using formula (B.4).

3.1.1. Special cases
For β = γ , Eq. (1) turns out to be a double-order accelerating relaxation equation, and using (26) the above formula (30)

reduces to

u(t) =

∞−
m=0

(−1)m

m!


λ(Q + T )tβ

m
H1,1

1,2

[
λPtα

 (−m, 1)
(0, 1), (−βm, α)

]
, (31)
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Fig. 1. Comparison of the frequency spectra of triple-order (5) and classic cases with those of single- (top) and double-order (bottom) cases when λ = 1.
In the single-order case {P = 1,Q = T = 0, α = 0.1, 0.5, 0.9}, in the double-order case {P = Q = 1/2, T = 0} with {(α = 0.1, β = 0.5); (α = 0.5, β =

0.9)} and in the triple-order case {P = Q = T = 1/3, α = 0.1, β = 0.5, γ = 0.9}.

and for β = γ = α, using H-function properties (A.4), (A.5) and the H-function representation of Mittag-Leffler function
(B.7), formula (30) reduces to the simple anomalous relaxation solution

u(t) = H1,1
1,2

[
λ(P + Q + T )tα

 (0, 1)
(0, 1), (0, α)

]
, (32)

= Eα[−λ(P + Q + T )tα], (33)
originally derived by Mainardi [11].

The Laplace transform (5) can be seen also as the frequency spectrum of the fundamental solution of the distributed
time-fractional accelerating relaxation. These spectra for single, double and triple order are plotted and compared in Fig. 1
together with the classical solution of the relaxation equation (i.e. single order equal to 1). It is observed that for large
frequencies, which means small elapsed times, the behaviour in all considered cases is similar while for small frequencies,
which means large elapsed times, the competition among the time-differentiation orders causes different behaviours. In
particular, if the multi-order cases orders near to 1 are present, then their spectrum will be closer to that of the classic case
than the single-order spectra with order much less than 1. On the other hand, because of the presence in the multi-order
cases of orders much less than 1, their spectrum will be less close to the classic one than the single-order spectrum with
order close to 1. The same type of behaviour is observed between triple- and double-order cases when the higher orders are
compared.

3.2. Triple-order accelerating diffusion

As it has been noted in Section 2.2, the solutions of accelerating relaxation and of accelerating diffusion are related by
λ = κ2, where κ is the wavenumber variable in the Fourier domain. Then, applying this change to formula (29), the Fourier
transform of the accelerating diffusion solution is

u(κ, t) =

∞−
m=0

(−1)m

κ2Qtβ

m m−
ℓ=0

m
ℓ

 
T
Q

ℓ

t(γ−β)ℓEm+1
α,γ ℓ+β(m−ℓ)+1(−κ2Ptα), (34)



608 R.K. Saxena, G. Pagnini / Physica A 390 (2011) 602–613

or, in terms of the H-function, from formula (30)

u(κ, t) =

∞−
m=0

(−1)m

m!


κ2Qtβ

m m−
ℓ=0

m
ℓ

 
T
Q

ℓ

t(γ−β)ℓH1,1
1,2

[
κ2Ptα

 (−m, 1)
(0, 1), (β(ℓ − m) − γ ℓ, α)

]
. (35)

Thus on account of (35), we need to invert for eachm in the expression

gm(κ, t) = κ2mH1,1
1,2

[
κ2Ptα

 (−m, 1)
(0, 1), (β(ℓ − m) − γ ℓ, α)

]
. (36)

It is well known that the Fourier transform of an even function can be written in terms of the cosine Fourier transform as

1
2π

∫
+∞

−∞

e−iκxf (κ) dκ =
1
π

∫
+∞

0
f (κ) cos(κx) dκ. (37)

On employing (37) to invert (36) and using integral formula (A.8), we find that

gm(x, t) =
1

|x|2m+1
H2,1

3,3

[
x2

Ptα

(1, 1), (1 + γ ℓ − β(ℓ − m), α)(1 + m, 1)
(2m + 1, 2)(1 + m, 1), (1 + m, 1)

]
, (38)

which, by means of the definition of the H-function (A.1), can be written as the following Mellin–Barnes integral

gm(x, t) =
1

|x|2m+1

1
2π i

∫
+i∞

−i∞

Γ (s)Γ (2m + 1 − 2s)Γ (1 + m − s)
Γ (s − m)Γ (1 + m − s)Γ (1 + γ ℓ − β(ℓ − m) − αs)


x2

Ptα

s

ds.

If we apply the rule Γ (1 + z) = zΓ (z) and the duplication formula Γ (z)Γ (1/2 + z) = Γ (2z)
√

π21−2z , the above formula
simplifies to

gm(x, t) =
22m

√
π |x|2m+1

1
2π i

∫
+i∞

−i∞

Γ (s)Γ

m +

1
2 − s


Γ (1 + m − s)

Γ (s − m)Γ (1 + γ ℓ − β(ℓ − m) − αs)


x2

4Ptα

s

ds, (39)

which yields

gm(x, t) =
22m

√
π |x|2m+1

H2,1
2,3

[
x2

4Ptα

 (1, 1), (1 + γ ℓ − β(ℓ − m), α)
(m + 1/2, 1)(1 + m, 1), (1 + m, 1)

]
. (40)

Now, the application of property (A.4) to absorb the expression |x|−2m−1 inside the H-function in (40) gives the result

gm(x, t) =
(Ptα)−m

√
4πPtα

H2,1
2,3

[
x2

4Ptα

(1/2 − m, 1), (1 − α/2 − αm + γ ℓ − β(ℓ − m), α)
(0, 1)(1/2, 1), (1/2, 1)

]
.

Thus from (35), we obtain the desired solution of Eq. (2) in an infinite domain

u(x, t) =
1

√
4πPtα

∞−
m=0

(Ptα)−m (−Qtβ)m

m!

m−
ℓ=0

m
ℓ

 
T
Q

ℓ

tℓ(γ−β)

×H2,1
2,3

[
x2

4Ptα

(1/2 − m, 1), (1 − α/2 − αm + γ ℓ − β(ℓ − m), α)
(0, 1)(1/2, 1), (1/2, 1)

]
. (41)

3.2.1. Special cases
When β = γ , Eq. (2) turns out to be a double-order accelerating diffusion equation, and the above result (41), using

formula (26), reduces to the following one given first by Langlands [38]

u(x, t) =
1

√
4πPtα

∞−
m=0

(−1)m

m!

[
(Q + T )t(β−α)

P

]m

× H2,1
2,3

[
x2

4Ptα

(1/2 − m, 1), (1 − α/2 + (β − α)m, α)
(0, 1)(1/2, 1), (1/2, 1)

]
. (42)

Furthermore, when β = γ = α, using (A.6) and (A.7), formula (41) reduces to the fundamental solution of the time-
fractional diffusion equation first obtained by Mainardi [45,11] in terms of a Wright-type function now known as the
M-function [46,47,25,40] and later in terms of the H-function [48,16]

u(x, t) =
1

√
4πDtα

H2,0
1,2

[
x2

4Dtα

 (1 − α/2, α)
(0, 1)(1/2, 1)

]
, (43)

=
1

2
√

Dtα
H1,0

1,1

[
|x|

√
Dtα

(1 − α/2, α/2)
(0, 1)

]
, (44)

=
1

2
√

Dtα
Mα/2


|x|

√
Dtα


, (45)
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Fig. 2. Comparison of the wavenumber–frequency spectra of triple-order (13) and classic cases with that of the single-order case when s = 0.01, 0.1, 1
and 10. In the single-order case {P = 1,Q = T = 0, α = 0.1, 0.5, 0.9} and in the triple-order case {P = Q = T = 1/3, α = 0.1, β = 0.5, γ = 0.9}.

where D = P + Q + T = 1 acts as the fractional diffusion coefficient. Representation (44) follows from (43) using its
Mellin–Barnes integral representation and the duplication formula of Gamma function.

The Fourier–Laplace transform (13) can be seen also as a wavenumber–frequency spectrum of the fundamental solution
of the distributed time-fractional accelerating diffusion. For fixed frequencies s = 0.01, 0.1, 1 and 10, the spectra of the
single, double and triple order are plotted and compared in Figs. 2 and 3 together with the spectrum of the classical diffusion
equation (i.e. single order equal to 1). It is possible to observe that, for all frequencies s, at small wavenumbers κ the
behaviour is the same while it differs for large wavenumbers. When s < 1, in analogy with the results showed in Fig. 1
for relaxation, in the multi-order cases because of the presence of orders near to 1, their spectrum will be closer to that of
the classic case than the single-order spectrawith ordermuch less than 1. On the other hand, the presence in themulti-order
cases of orders much less than 1 leads to their spectrum be less close to the classic one in comparison to the single-order
spectrum with order close to 1. The same type of behaviour is observed between triple and double order when the higher
orders are compared. When s = 1, all spectra collapse to a unique profile as follows from formula (13). For s > 1, if the
lower order is considered, then the triple order will be further away from the classic spectrum than the single-order cases
with orders higher than it. The same is not observed with the double-order spectrum because the lower order taken into
account in both cases.

4. Conclusion

In the present paper we have considered the triple-order time-fractional differential equations, with derivative orders
less than 1, for modelling both accelerating relaxation and accelerating diffusion, by using Riemann–Liouville fractional
differential operator. The corresponding analysis for decelerating relaxation and decelerating diffusion, by using Caputo
fractional differential operator, is considered in the companion paper [36].

A newmethod is outlined. It requires certain properties of the generalized Mittag-Leffler function and the H-function. It
is found that the solutions of both time-fractional equations with three time scales are infinite series of H-functions instead
of a simple unique function, as in the case of the corresponding single-order time-fractional equations. If we go further for
more scales than three, the results will be still obtained in terms of infinite series of H-functions, as can be seen from the
derivation of both Green functions (30) and (41).
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Fig. 3. Comparison of the wavenumber–frequency spectra of triple-order (13) and classic cases with that of the double-order case when s = 0.01, 0.1,
1 and 10. In the double-order case {P = Q = 1/2, T = 0} with {(α = 0.1, β = 0.5); (α = 0.5, β = 0.9)} and in the triple-order case
{P = Q = T = 1/3, α = 0.1, β = 0.5, γ = 0.9}.

Thus, the new method provides an elegant generalization of the method introduced by Langlands [38], to study the
double-order case of accelerating processes, and it turns out to be a promising technique for future developments in the
field, especially with respect to finding exact solutions.
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Appendix A. The H-function

The H-function is defined by means of a Mellin–Barnes type integral as follows [49,50]

Hm,n
p,q

[
z
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]
=

1
2π i

∫
Ω

χ(s)z−s ds, (A.1)

with i = (−1)1/2 and

χ(s) =

m∏
j=1

Γ (bj + Bjs)
n∏

i=1
Γ (1 − ai − Ais)

q∏
j=m+1

Γ (1 − bj − Bjs)
p∏

i=n+1
Γ (ai + Ais)

, (A.2)

where an empty product is always interpreted as unity, {m, n, p, q} ∈ N0 with 1 ≤ m ≤ q and 0 ≤ n ≤ p, {Ai, Bj} ∈ R+ and
{ai, bj} ∈ R, or C, with i = 1, . . . , p and j = 1, . . . , q such that

Ai(bj + k) ≠ Bj(ai − ℓ − 1), k, ℓ ∈ N0; i = 1, . . . , n; j = 1, . . . ,m. (A.3)
The poles of the integrand in (A.1) are assumed to be simple.
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Properties of the H-function used in the present paper are: [50, formula (1.60)]

zσHm,n
p,q

[
z
(a1, A1) . . . (ap, Ap)
(b1, B1) . . . (bp, Bp)

]
= Hm,n

p,q

[
z
(a1 + σA1, A1) . . . (ap + σAp, Ap)
(b1 + σB1, B1) . . . (bp + σBp, Bp)

]
, σ ∈ C; (A.4)

[50, formula (1.88)] for ω ≠ 0 and η ≠ 0 complex numbers it holds

Hm,n
p,q

[
ηω

(a1, A1) . . . (ap, Ap)
(b1, B1) . . . (bp, Bp)

]
= ηb1/B1

∞−
r=0

(1 − η1/B1)r

r!
Hm,n

p,q

[
ω

 (a1, A1) . . . (ap + Ap, Ap)
(b1 + r, B1) . . . (bp + Bp, Bp)

]
, (A.5)

where η is arbitrary form = 1, while form > 1 the factor η is such that |η1/B1 − 1| < 1, arg(ηω) = B1 arg(η1/B1) + arg(ω)
and | arg(η1/B1)| < π/2; [50, formula (1.90)] for ω ≠ 0 and η ≠ 0 complex numbers it holds

Hm,n
p,q

[
ηω

(a1, A1) . . . (ap, Ap)
(b1, B1) . . . (bp, Bp)

]
= η(a1−1)/A1

∞−
r=0

(1 − η−1/A1)r

r!
Hm,n

p,q

[
ω

(a1 − r, A1) . . . (ap + Ap, Ap)
(b1, B1) . . . (bp + Bp, Bp)

]
, (A.6)

provided n > 0, Re(η1/A1) > 1/2, arg(ηω) = A1 arg(η1/A1) + arg(ω) and | arg(η1/A1)| < π/2; [50, formula (1.56)]

Hm,n
p,q

[
z
 (a1, A1) . . . (ap, Ap)
(b1, B1) . . . (bp−1, Bp−1)(a1, A1)

]
= Hm,n−1

p−1,q−1

[
z
 (a2, A2) . . . (ap, Ap)
(b1, B1) . . . (bp−1, Bp−1)

]
, (A.7)

provided n ≥ 1 and q > m.
To concludewe report below the cosine transform of theH-functionwhich is used in the text, see Ref. [51, p. 682 formula

(3)] or with further manipulations [50, p. 58 formula (2.50)],∫
∞

0
zρ−1 cos(κz)Hm,n

p,q

[
ωzµ

(a1, 1), . . . , (ap, Ap)
(b1, 1), . . . , (bq, Bq)

]
dz

= (π/κρ)Hn+1,m
q+1,p+2

[
κµ

ω

 (1 − bq, Bq), (1/2 + ρ/2, µ/2)
(ρ, µ)(1 − ap, Ap), (1/2 + ρ/2, µ/2)

]
, (A.8)

where Re

ρ + µmin1≤j≤m


bj
Bj


> 0, Re


ρ + µmax1≤j≤n


aj−1
Aj


< 1, and κ, µ > 0, ρ, ω ∈ C, | argω| < πϕ/2, ϕ > 0,

where ϕ is defined by

ϕ =

n−
j=1

Aj −

p−
j=n+1

Aj +

m−
j=1

Bj −

q−
j=m+1

Bj > 0.

Appendix B. Prabhakar generalization of Mittag-Leffler function

The Mittag-Leffler function is defined by means of the series representation

Eα(z) =

∞−
n=0

zn

Γ (αn + 1)
, α ∈ C; Re(α) > 0, (B.1)

and its generalization is

Eα,β(z) =

∞−
n=0

zn

Γ (αn + β)
, {α, β} ∈ C; Re(α), Re(β) > 0. (B.2)

A further generalization was introduced in 1971 by Prabhakar [52] in the form

Eγ

α,β(z) =

∞−
n=0

(γ )n

Γ (αn + β)

zn

n!
, {α, β, γ } ∈ C; Re(α), Re(β), (B.3)

where (γ )n is the Pochhammer symbol defined by

(γ )0 = 1, (γ )n = γ (γ + 1) . . . (γ + n − 1) =
Γ (γ + n)

Γ (γ )
when γ ≠ 0,

wheneverΓ (γ ) is defined. Eγ

α,β(z) is an entire function of order ρ = [Re(α)]−1 and type σ =
1
ρ


Re(α)Re(α)

−ρ , see Ref. [53].
This function was studied earlier by Prabhakar [52], Saxena [54], Kilbas et al. [55] and Saxena and Saigo [56].

It is important to remark here that when γ is a positive integer then (B.3) is related to (B.2). In fact, remembering the
formula of them-derivative of Eα,β(z), see Ref. [40, p. 246 formula (9.7)],

E(m)
α,β =

∞−
n=0

(m + n)!
Γ (αn + αm + β)

zn

n!
,
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the function Eγ

α,β(z) for a positive integer third parameter γ = m + 1 turns out to be

Em+1
α,β (z) =

1
m!

E(m)
α,β−αm(z). (B.4)

Some special cases of interest of this function are enumerated below

(i) Eα(z) = E1
α,1(z); Eα,β(z) = E1

α,β(z),

(ii) Φ(γ , β; z) = Γ (β)Eγ

1,β(z),

where Φ(γ , β; z) is the Kummer confluent hypergeometric function [57, p. 248, Eq. (1)]. The Laplace transform of the
generalized Mittag-Leffler function is given by [52]

L

zβ−1Eγ

α,β(czα); s


= s−β(1 − cs−α)−γ , s ∈ C, Re(s) (B.5)

where {α, β, γ , c} ∈ C, Re(α) > 0, Re(β) > 0 and |cs−α
| < 1. Formula (B.5) can be used also for Laplace transform

inversion by virtue of a theorem given in the book by Doetsch [58, Section 22]. For γ = 1 formula (B.5) reduces to

L

zβ−1Eα,β(czα); s


= s−β(1 − cs−α)−1. (B.6)

To conclude, we give the H-function representation of (B.3)

Eγ

α,β(z) =
1

Γ (γ )
H1,1

1,2

[
−z

 (1 − γ , 1)
(0, 1), (1 − β, α)

]
, (B.7)

which can be checked to give the series (B.3) after application of the residual theorem to the Mellin–Barnes integral repre-
sentation (A.1) and (A.2).
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