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a b s t r a c t

The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative
transfer as the combined effect of Doppler and pressure broadenings is known as the
Voigt profile function. Because of its convolution integral representation, the Voigt profile
can be interpreted as the probability density function of the sum of two independent
random variables with Gaussian density (due to the Doppler effect) and Lorentzian density
(due to the pressure effect). Since these densities belong to the class of symmetric
Lévy stable distributions, a probabilistic generalization is proposed as the convolution
of two arbitrary symmetric Lévy densities. We study the case when the widths of the
distributions considered depend on a scale factor τ that is representative of spatial
inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic
generalization of the Voigt function are here introduced and interpreted as generalized
diffusion equations containing two Riesz space-fractional derivatives, thus classified as
space-fractional diffusion equations of double order.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Inmolecular spectroscopy and atmospheric radiative transfer, the combined effects of Doppler and pressure broadenings
lead to the Voigt profile function, which turns out to be the convolution of the Gaussian (due to the Doppler broadening) and
the Lorentzian (due to the pressure broadening) distributions. The study of the Voigt profile is an old issue in the literature
andmany efforts have been directed to analyzing its mathematical properties and relations with other special functions and
to obtaining its numerical computation, e.g. [1–10].
In most papers that have appeared in the literature, the Voigt profile is defined in terms of a single weight parameter,

that is the ratio of the Lorentzian to the Gaussianwidth. In physical applications, this parameter indicates which distribution
is the more important. Generally, the weight parameter is considered with a constant value fixed by the process. Here we
are interested in studying the Voigt profile function when the widths are not constant but depend on a scale factor with
a power law. Physically, the one-dimensional variable of the Voigt function is a wavenumber and this permits one to take
into account spatial inhomogeneity or temporal non-stationarity when the scale factor is the distance from an origin or the
elapsed time from an initial instant, respectively.
Since in probability theory the Gaussian and the Lorentzian distributions are known to belong to the class of symmetric

Lévy stable distributions, in this framework we propose to generalize the Voigt function by adopting the convolution of two
arbitrary symmetric Lévy distributions. Moreover, we provide the integro-differential equations with respect to the scale
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Fig. 1. Comparison between the Voigt, Gauss and Lorentz distributions with weight parameter a = ωL/ωG = 0.01, 0.1, 1, 2.

factor satisfied by the generalized Voigt profiles. These evolution equations can be interpreted as space-fractional diffusion
equations of double order.
The paper is organized as follows. In Section 2 the basic definitions for the Voigt profile are given. In Section 3 the

connection with the class of Lévy stable distributions and the probabilistic generalization are introduced. In Section 4 we
derive the integro-differential evolution equations of the generalized Voigt function with respect to the scale factor. In
Section 5 the limits of low and high scale factor values are investigated. Finally, Section 6 is devoted to the concluding
remarks.

2. The Voigt profile function

The Gaussian G(x) and the Lorentzian N(x) profiles are defined as

G(x) =
1
√
πωG

exp

[
−

(
x
ωG

)2]
, N(x) =

1
πωL

ω2L

x2 + ω2L
, (1)

where ωG and ωL are the corresponding widths. From their convolution we have the ordinary Voigt profile V (x)

V (x) =
∫
+∞

−∞

N(x− ξ)G(ξ)dξ =
ωL/ωG

π3/2

∫
+∞

−∞

e−(ξ/ωG)
2

(x− ξ)2 + ω2L
dξ . (2)

Themain parameter of theVoigt function is theweight parameter adefined as a = ωL/ωG, which is the ratio of the Lorentzian
and Gaussian widths and thus a measure of the relative importance of their influences on the properties of the process.
Generally, the a < 1 case is important in astrophysics while a > 1 for spectroscopy of cold and dense plasma [3]. In
particular, two limits can be considered: (i) a → 0; (ii) a → ∞. In the first case, the Lorentzian contribution is negligible
with respect to the Gaussian one, while the inverse occurs in the second case; see Fig. 1. Let f̂ (κ) be the characteristic
function, which is the Fourier transform of f (x), so that

f̂ (κ) =
∫
+∞

−∞

e+iκxf (x)dx, f (x) =
1
2π

∫
+∞

−∞

e−iκ x̂f (κ)dκ. (3)

Then V̂ (κ) = Ĝ(κ)N̂(κ) = e−ω
2
Gκ
2/4 e−ωL|κ|. These formulae imply the following integral representation for the Voigt profile:
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1
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3. The probabilistic generalization of the Voigt profile function

It is well known that if X1 and X2 are two independent random variables with probability density function (PDF) q1 and
q2, respectively, then the PDF p(w) of the random variableW = X1 + X2 is given by the convolution integral

p(w) =
∫
+∞

−∞

q1(w − x2)q2(x2)dx2. (5)

From (2) and (5), the Voigt profile can be seen as the resulting PDF of the sum of two independent random variables, one
with Gaussian PDF and the other with Lorentzian PDF.
The Voigt function has been generalized in the literature in different ways; e.g. in [8] the integrand function in formula

(4) is multiplied by a polynomial, in [11–13] the cosine function in (4) is replaced with the Bessel function and with the
Wright function with one and more variables. In this paper we propose a probabilistic generalization in the framework of
Lévy distributions. It is well known that the Gaussian and the Lorentzian distributions are two special cases of the class
{Lα(x)} of the symmetric Lévy stable distributions, where α, 0 < α ≤ 2, is called the characteristic exponent. Writing the
characteristic function (3) of the Lévy distributions as L̂α(κ) = e−|κ|

α
, the Gaussian and the Lorentzian profiles defined in

(1) are recovered with α = 2 and ωG = 2, and with α = 1 and ωL = 1, respectively,

G(x) = L2(x) =
1
2
√
π
e−x

2/4
, N(x) = L1(x) =

1
π

1
x2 + 1

. (6)

The Voigt function can be straightforwardly generalized in a probabilistic sense by considering the sum of two independent
random variables with symmetric stable densities. Mathematically, this corresponds to the convolution of two arbitrary
symmetric Lévy densities of characteristic exponents α1 and α2. Denoting with V(x) the generalized Voigt function, its
integral representation and its characteristic function V̂(κ) are

V(x) =
∫
+∞

−∞

Lα1(x− ξ)Lα2(ξ)dξ, V̂(κ) = e−|κ|
α1−|κ|α2 . (7)

4. The evolution equations with respect to the scale factor

In the previous sections thewidthsωG andωL are considered to be constants and theweight parameter a fixed. However,
unlike in the previous papers on the topic, wewould like to knowwhat happenswhen thewidthsωG andωL change in space
or time with a power law with respect to a scale factor. This analysis is relevant in inhomogeneous or non-stationary cases,
for which the scale factor corresponds to the distance from an origin or the elapsed time, respectively. Conversely, constant
values of widths can be considered for homogeneous and stationary cases. In the present section we consider a scale factor
τ for both spatial inhomogeneity and temporal non-stationarity.
It is well known that the Lévy density functions Lα(x, τ ) are the fundamental solutions of the space-fractional diffusion

equation [14–16]

∂Lα(x, τ )
∂τ

= Dαx Lα(x, τ ), Lα(x, 0) = δ(x), 0 < α ≤ 2, (8)

where Dαx is a pseudo-differential operator known as the Riesz space-fractional derivative of order α. Such a pseudo-
differential operator is defined in terms of its symbol −|κ|α , i.e. the Fourier transform of Dαx f (x) is −|κ|

α̂ f (κ). We recall
the explicit representations for α 6= 2:

Dαx f (x) =


Γ (1+ α)

π
sin
(απ
2

) ∫ +∞
0

f (x+ ξ)− 2f (x)+ f (x− ξ)
ξ 1+α

dξ, α 6= 1

−
1
π

d
dx

∫
+∞

−∞

f (ξ)
x− ξ

dξ, α = 1
(9)

and the limit Dαx f (x) = d
2f /dx2 when α = 2. The solutions of (8) have the power law scaling property

Lα(x, τ ) = τ−1/αLα
( x
τ 1/α

)
. (10)

For analytical and graphical representations of stable densities we refer the reader to [15]. We observe that the distributions
defined in (10) are self-similar and they obey to the same power law scaling for all values of the scale factor τ . In particular,
forα = 2 andα = 1 the Gaussian and the Lorentzian densities are recovered, respectively, and from (10)we haveωG ∝ τ 1/2
and ωL ∝ τ .
Following scaling (10), our generalized Voigt function (7) becomes

V(x, τ ) = τ−1/α1−1/α2
∫
+∞

−∞

Lα1

(
x− ξ
τ 1/α1

)
Lα2

(
ξ

τ 1/α2

)
dξ, (11)
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Fig. 2. The evolution of the generalized Voigt function V(x, τ ) for the pairs (α1, α2) = {(0.5, 2), (1.5, 2), (0.5, 1.5), (1, 1.5)}with τ = 0.1, 1, 10.

and its characteristic function is

V̂(κ, τ ) = e−|κ|
α1 τ−|κ|α2 τ . (12)

In this case, it is possible to show that formula (11) is the solution of the following integro-differential equation:

∂V

∂τ
= Dα1x V(x, τ )+ Dα2x V(x, τ ), V(x, 0) = δ(x). (13)

In fact, after the Fourier transformation Eq. (13) becomes

∂V̂

∂τ
= −|κ|α1 V̂(κ, τ )− |κ|α2 V̂(κ, τ ), V̂(κ, 0) = 1, (14)

which is solved by (12). When α1 = 1 and α2 = 2 the integro-differential equation (13) is the evolution equation of the
ordinary Voigt function. Eq. (13) can be classified as a space-fractional diffusion equation of double order. The evolution of
V(x, τ ) for different pairs of (α1, α2)with τ = 0.1, 1, 10 is shown in Fig. 2.

5. The asymptotic scaling laws for low and high scale factors

The Voigt (2) and the generalized Voigt (7) profiles are derived from the convolutions of two self-similar processes with
different scaling laws and, as a consequence, the similarity is lost. However, we ask which are the scaling laws of the Voigt
functions in the limits of low and high values of the scale factor τ .
Since for Lévy stable densities with α 6= 2 the mean square displacement diverges, the same occurs for the ordinary

and the generalized Voigt functions. Then, to analyze the scaling laws when τ → 0 and τ → ∞ the variance 〈x2〉 cannot
be used. However, the scaling law of a Lévy stable process with characteristic exponent α can be studied by means of the
quantity 〈|x|q〉1/q, with 0 < q < α. In this respect, we have

〈|x|q〉 = 2
∫
+∞

0
xqV(x, τ )dx = 2V∗(q+ 1, τ ), 0 < q < min{α1, α2}, (15)

where V∗(s) is the Mellin transform of V(x), x > 0, defined as [17]

V∗(s) =
∫
+∞

0
V(x)xs−1dx, V(x) =

1
2π i

∫ c+∞i

c−∞i
V∗(s)x−sds. (16)
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Without loss of generality, let us stateα1 < α2. Starting from (7) and following [7], theMellin–Barnes integral representation
of the generalized Voigt function V(x) is

V(x, τ ) =
τ−1/α2

α2π

1
2π i

∫
L0

1
2π i

∫
L1

Γ (s0)Γ (s1)Γ
(
1− s0 − α1s1

α2

)
τ s0/α2+(α1/α2−1)s1 cos(s0π/2)x−s0ds0ds1. (17)

Hence its Mellin transform is

V∗(s1, τ ) =
τ (s0−1)/α2

α2π
Γ (s0) cos(s0π/2)

1
2π i

∫
L1

Γ (s1)Γ
(
1− s0 − α1s1

α2

)
τ (α1/α2−1)s1ds1, (18)

and, finally,

〈|x|q〉 = 2V∗(q+ 1, τ )

= −
2 τ q/α2

α2π
Γ (q+ 1) sin(qπ/2)

1
2π i

∫
L1

Γ (s1)Γ
(
−q− α1s1

α2

)
τ (α1/α2−1)s1ds1. (19)

Applying the residue theorem to Γ
(
−q−α1s1

α2

)
, we obtain the convergent series for τ →∞:

〈|x|q〉 = −
2τ q/α1

α1π
Γ (q+ 1) sin(qπ/2)

∞∑
n=0

(−1)n

n!
Γ

(
α2n− q
α1

)
τ−n(α2/α1−1). (20)

Applying the residue theorem to Γ (s1), we obtain the convergent series for τ → 0:

〈|x|q〉 = −
2 τ q/α2

α2π
Γ (q+ 1) sin(qπ/2)

∞∑
n=0

(−1)n

n!
Γ

(
α1n− q
α2

)
τ n(1−α1/α2). (21)

In papers [14,16] the limits (τ → 0 , τ →∞) are computed using a different method but with the same results. Then the
two limits under consideration give{

〈xq〉1/q ∝ τ 1/α2 , τ → 0
〈xq〉1/q ∝ τ 1/α1 , τ →∞.

(22)

In the limit τ → 0, the corresponding scaling law of the generalized Voigt profile is governed by the Lévy density with
the higher value of the characteristic exponent, while in the limit τ → ∞ it is governed by the one with the lower value.
In particular, for the ordinary Voigt profile (α1 = 1 , α2 = 2) the process scales as τ 1/2 and τ for low and high values of
the scale factor, respectively. This means that if the power law represents inhomogeneity, or non-stationarity, the resulting
profile is approximated by a Gaussian for small distances from an origin, or small elapsed times, and it is approximated by
a Lorentzian for large distances, or large elapsed times. This result is consistent with the usual limits a → 0 and a → ∞;
see Fig. 1.

6. Conclusions

In the present paper we have considered the Voigt profile function and proposed a probabilistic generalization as the
convolution of two arbitrary symmetric Lévy densities. Generally, the Voigt profile characteristics are studied with respect
to a weight parameter a that is the ratio of Lorentzian to Gaussian widths, a = ωL/ωG, and it is assumed to be a constant
property of the process. Conversely, herewehave considered bothwidths depending on a scale factor τ that is representative
of inhomogeneity or non-stationarity. We have introduced parametric integro-differential equations for the ordinary and
the generalized Voigt functions. These integro-differential equations can be classified as space-fractional diffusion equations
of double order because they include two Riesz space-fractional derivatives of different orders. In this respect, the present
paper shows an application in physics of the distributed fractional derivatives formalism.
Finally, the limits of the Voigt function for low and high values of the scale factor are considered. The Voigt function

turns out to be not self-similar, even if it is expressed as the convolution of two self-similar Lévy processes. Its scaling law
is dominated by the Lévy density with the higher value of the characteristic exponent when τ → 0 and by that with the
lower value when τ →∞.
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